

TIRANTES DE BARRA ASDO PARA ESTRUCTURAS MARINAS

Anker Schroeder fabrica tirantes de barra para el arriostramiento de estructuras de retención como muros de muelles, estribos, embarcaderos y puentes grúa. Disponemos de tirantes de barra con diámetros que van de M64 a M170 y pueden ser suministradas en los tipos de acero 355, 460, 500 y 700. Los tirantes de barra de Anker Schroeder se fabrican a partir de barras macizas circulares de acero con extremos forjados o roscados que permiten una gran variedad de uniones con pantallas de tablestacas, perfiles circulares huecos, perfiles en H, muros combinados y muros pantalla.

ASDO

VISTA GENERAL

TIPOS DE ACERO

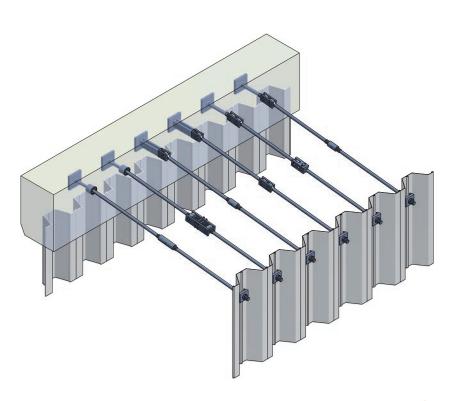
Anker Schroeder ofrece cuatro tipos de acero estándar para los tirantes:

ASD0355

O ASD0460

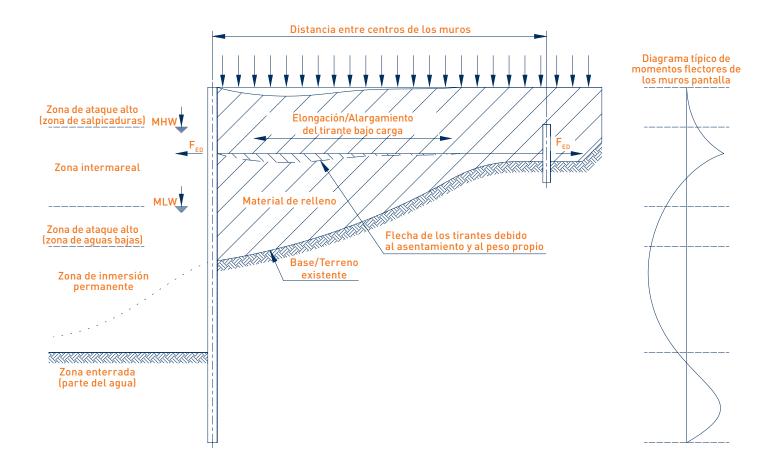
ASD0500

O ASD0700


	Diámetro	f _y N/mm²	f _{ua} N/mm²
ASD0355	M64 - M160	350	510
ASD0460	M64 - M165	460	610
ASD0500	M64 - M165	500	660
ASD0700	M64 - M170	700	900

La elección del tipo de acero depende de numerosos factores: si bien el acero de mayor resistencia siempre producirá el tirante de barra de menor peso, puede que esto no sea adecuado para cumplir con los requisitos de rigidez, la soldadura in situ o con los plazos de entrega. Hay disponibles más tipos de acero. Si necesita más información acerca de ellos, póngase en contacto con Anker Schroeder.

Dependiendo del diámetro y la longitud requeridos, los tirantes de Anker Schroeder se fabrican usando acero selecto de grano fino, acero de baja aleación de alta resistencia o acero templado bonificado. La elección depende de los requisitos específicos de cada proyecto, pero se garantizará las propiedades mínimas indicadas en la tabla anterior. Todos los tirantes y componentes se fabrican de empleando un sistema de calidad acreditado y auditado de acuerdo con la norma ISO 9001.


Sistemas de muros pantalla de alto módulo resistente

Sistemas con muros de hormigón

TIRANTES DE BARRA ASDO PARA ESTRUCTURAS MARINAS

Consideraciones de diseño de tirantes de barra para muros de contención

Resistencia característica – el anclaje debe diseñarse para proporcionar una resistencia característica suficiente para satisfacer la carga de cálculo requerida (la resistencia característica se calcula de modo diferente dependiendo de la norma de cálculo).

Puerto Caucedo, Dominica

Resistencia de servicio – la elongación/ alargamiento de los tirantes sometidos a la carga de servicio puede ser el factor limitador, más que la resistencia característica, especialmente donde se deben acomodar grandes cargas de grúas. La rigidez de un tirante de barra

Puerto de Kingston, Jamaica

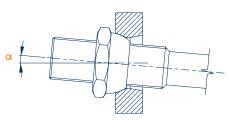
es función del diámetro de la barra, y por consiguiente, es posible que un tirante de mayor límite elástico (ej. AS-D0700) no sea el más adecuado. El movimiento debido a la sobrecarga puede reducirse en muchos casos precargando los tirantes en el momento de la instalación para desarrollar la resistencia pasiva del terreno. La precarga del tirante se consigue con mayor facilidad en un extremo roscado del mismo mediante un gato hidráulico. La práctica de la precarga debe de ser considerada en la fase del diseño.

ASDO

DE DISEÑO

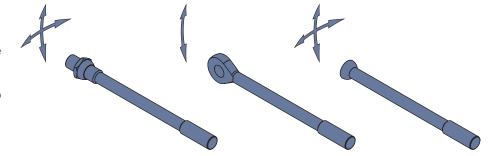
CONSIDERACIONES

Asentamiento – el efecto del hundimiento del tirante y el desplazamiento forzoso debido al asentamiento del relleno puede provocar tensiones normales significativas de flexión en un anclaje fijo y el aumento de la tensión normal de tracción local en el tirante. Las tensiones tangenciales debidas a los esfuerzos cortantes podrían llegar a alcanzar la rosca si un tirante se desplaza al asentarse el relleno, causando tensiones compuestas que deben ser consideradas en el diseño de detalle. A menudo, esto se puede solucionar poniendo articulaciones en las uniones con el muro.

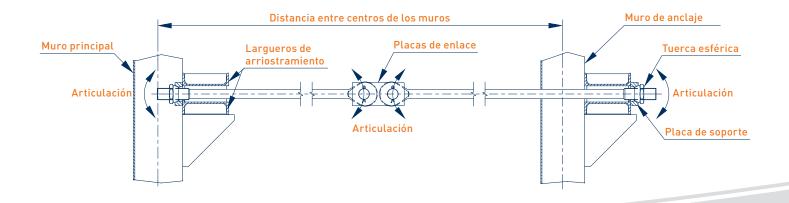

El hecho de que una unión sea articulada o fija afectará a la resistencia característica del tirante. Si la unión es fija debe emplearse un tamaño mayor de rosca para acomodar cualquier momento flector inducido en el tirante.

Conductos de asentamiento también pueden instalarse para reducir la flexión en la unión, sin embargo esto puede ser difícil y caro de instalar y, si no se alinean correctamente, no se evitará que se introduzca momento flector por asentamiento. Si se emplean conductos de asentamiento, se recomienda el uso de articulaciones en las uniones con el que cuando se muevan los conductos, aparezcan momentos flectores debido al peso propio de la barra. Otros sistemas de protección contra la corrosión (como la envoltura) son esenciales, especialmente donde hay posibilidades de que el conducto actúe como conductor del agua del mar. Contacte con nuestro departamento técnico para más información.

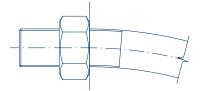
Sistemas de extremo articulado típico de Anker Schroeder


Sistema de protección contra la corrosión

Los tirantes de barra se emplean típicamente en entornos agresivos, por lo que se debe pensar en factores de protección contra la corrosión que influyan positivamente sobre la vida efectiva del mismo. Es importante considerar la protección de los tirantes contra la corrosión en la fase de diseño v. en particular, la unión al muro frontal, va que el tirante está sujeto típicamente al entorno más agresivo en este punto. Algunas opciones son la protección catódica, cinta protectora o sistemas de revestimiento. En la mayoría de los casos, el acero de sacrificio es la forma de protección contra la corrosión más económica y robusta. Véase la página 24 para más detalles.


Tensión normal debida a la flexión inducida por asentamientos o alineamientos incorrectos

La articulación elimina la tensión normal debida a la flexión en la unión $\alpha < 7^\circ$


Tuerca esférica roscada

Ojal forjado Extremo esférico forjado

RESISTENCIA A TRACCIÓN DE LOS TIRANTES

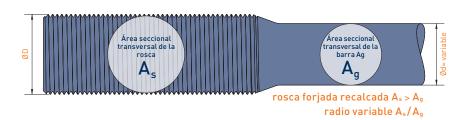
De acuerdo con EN 1993-5, la resistencia a tracción $F_{t,Rd}$ de un tirante se calcula como la menor de las resistencias a tracción de la rosca $F_{tt,Rd}$ o de la barra $F_{tg,Rd}$ durante el periodo de vida útil de la estructura.

Tensión normal de flexión en la rosca inducida por un asentamiento o un alineamiento incorrecto

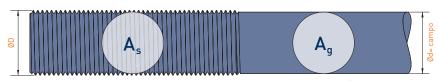
Es importante destacar que la resistencia de la rosca de un tirante de barra se ve reducida por el factor k_t . De acuerdo con la norma EN1993-5, este factor se introduce para considerar posibles tensiones adicionales debidas al asentamiento del relleno o a una instalación en condiciones no ideales.

De acuerdo con muchos de los anexos nacionales de la norma EN1993-5, se debe usar un valor conservador de 0.6 para el factor kt a no ser que los detalles estructurales de la unión eliminen cualquier momento flector posible (en este caso se puede usar 0,9). No obs-

 $F_{t,Rd} = la \, menor \, de \colon F_{tg,Rd} = A_g \, x \, f_y / \gamma_{M0}$ $F_{tt,Rd} = k_t \, x \, f_{ua} \, x \, A_s / \gamma_{M2}$ $A_s = \text{\'a} \text{\'a} \text{\'e} \text{\'a} \text{\'e} \text{$


tante, puede ser difícil eliminar completamente las flexiones, a menudo conductos de asentamiento se emplean pero las condiciones típicas de la ubicación dificultan la correcta instalación de los mismos imposibilitando la restricción de la flexión introducida por el peso propio del tirante, ya que el conducto se mueve con el relleno.

Tanto el alineamiento de los tirantes, especialmente para muros pantalla, como la predicción exacta del asentamiento son tareas difíciles. Por ello, Anker Schroeder recomienda emplear un factor k_t de 0,6 combinándolo con uniones

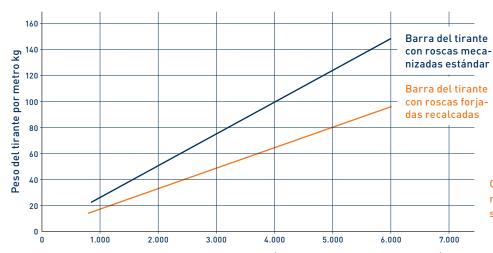

articuladas, lo cual puede también tener ventajas para la resistencia contra la corrosión - véase la página 24.

Es por esta razón que Anker Schroeder ha desarrollado toda una gama de extremos forjados recalcados para tirantes. El forjado recalcado permite que las roscas aumenten de tamaño añadiendo poco peso adicional al tirante. Aumentando el diámetro de la rosca se pueden minimizar las tensiones normales debidas a la flexión y la protección catódica se puede añadir fácilmente a la porción de la rosca, a menudo la parte más vulnerable de un tirante de barra.

Solo las roscas forjadas recalcadas aseguran que la barra sea la parte más débil de un tirante. Esto tiene ventajas, pues en el desafortunado caso de que haya un fallo estructural, la barra desarrollará su máxima resistencia de alargamiento, proporcionando una mayor advertencia de fallo de servicio en el muro del pilar.

Ventaja de las roscas forjadas recalcadas área de tensión de la rosca > área de tensión de la barra

rosca laminada estándar $A_s = A_g$ proporción fija A_s/A_g


CONSIDERACIONES DE DISEÑO

Forjado recalcado

Al contrario que el forjado tradicional, en el que el metal base se calienta y forja con una dimensión menor, el forjado recalcado es un proceso en el que el metal base aumenta el área de su sección transversal como resultado del proceso. En el caso de los tirantes, esto permite que los extremos de una barra aumenten su sección con el posterior mecanizado de los roscados. Se puede emplear el mismo proceso para formar extremos articulados, como ojales o extremos esféricos.

 $F_{tg,Rd}$ resistencia de diseño del tirante kN (conforme a EN1993-5 con $k_t = 0,6$)

Gráfico que muestra la ventaja de peso por metro de los tirantes forjados recalcados sobre los tirantes roscados estándar.

RESISTENCIA CARACTERÍSTICA DE LOS TIRANTES DE BARRA ASDO

rosca
recalcada

Barra con extremos roscados recalcados - longitudes individuales de hasta 22 m disponibles, dependiendo del diámetro y el tipo de acero (tensores/manguitos empleados para longitudes mayores).

Tabla 2 - Tirantes con roscas forjadas recalcadas

Diámetro nominal de la rosca recalcada	ØD _t	Métrico	64	68	72	76	80	85	90	95	100
Área de tracción de la rosca	As	mm²	2.676	3.055	3.460	3.889	4.344	4.948	5.591	6.273	6.995
Diámetros disponibles para la barra*	para todo tipo de acero	mm	48-56	52-60	52-64	56-68	60-72	63-76	68-80	70-85	75-90

ASD0355 - Resistencia a tracción (EN 1993-5)

		Código del tirante		ASD0355 -	M64/48	M68/52	M72/56	M76/60	M80/63	M85/68	M90/70	M95/75	M100/80
	9	Diámetro ideal la barra	ØD _g	mm	48	52	56	60	63	68	70	75	80
	9,0	Área inicial de la barra	A_g	mm²	1.810	2.124	2.463	2.827	3.117	3.632	3.848	4.418	5.027
	<u>چ</u> "	Límite elástico de la barra	Fy	kN	642	754	874	1.004	1.107	1.289	1.366	1.568	1.784
2		Resistencia última de la barra	Fua	kN	923	1.083	1.256	1.442	1.590	1.852	1.963	2.253	2.564
0355		Resistencia de tracción	$F_{t,Rd}$	kN	642	748	847	952	1.063	1.211	1.366	1.536	1.712
ASD0;		Código del tirante		ASD0355 -	M64/56	M68/60	M72/64	M76/68	M80/72	M85/75	M90/80	M95/85	M100/90
⋖		Diámetro ideal la barra	ØD _g	mm	56	60	64	68	72	75	80	85	90
	0,9	Área inicial de la barra	A_g	mm²	2.463	2.827	3.217	3.632	4.072	4.418	5.027	5.675	6.362
	ي د اا	Límite elástico de la barra	F_y	kN	874	1.004	1.142	1.289	1.445	1.568	1.784	2.014	2.258
		Resistencia última de la barra	Fua	kN	1.256	1.442	1.641	1.852	2.076	2.253	2.564	2.894	3.244
		Resistencia de tracción	$F_{t,Rd}$	kN	874	1.004	1.142	1.289	1.445	1.568	1.784	2.014	2.258

ASD0460 - Resistencia de tracción (EN 1993-5)

		Código del tirante		ASD0460 -	M64/48	M68/52	M72/52	M76/56	M80/60	M85/63	M90/68	M95/72	M100/75
		Diámetro ideal la barra	ØD _g	mm	48	52	52	56	60	63	68	72	75
	9'0	Área inicial de la barra	A_g	mm²	1.810	2.124	2.124	2.463	2.827	3.117	3.632	4.072	4.418
	<u>ب</u> ا	Límite elástico de la barra	F_y	kN	832	977	977	1.133	1.301	1.434	1.671	1.873	2.032
0		Resistencia última de la barra	Fua	kN	1.104	1.295	1.295	1.502	1.725	1.902	2.215	2.484	2.695
046		Resistencia de tracción	$F_{t,Rd}$	kN	784	895	977	1.133	1.272	1.434	1.637	1.837	2.032
SD		Código del tirante		ASD0460 -	M64/56	M68/60	M72/64	M76/68	M80/72	M85/76	M90/80	M95/85	M100/90
ASD0460		Código del tirante Diámetro ideal la barra	ØD _g	ASD0460 - mm	M64/56 56	M68/60 60	M72/64 64	M76/68 68	M80/72 72	M85/76 76	M90/80 80	M95/85 85	M100/90 90
ASD	6'0		ØD _g										
ASD	kt = 0,9	Diámetro ideal la barra	. ,	mm	56	60	64	68	72	76	80	85	90
ASD	= 0,	Diámetro ideal la barra Área inicial de la barra	Ag	mm mm²	56 2.463	60 2.827	64 3.217	68 3.632	72 4.072	76 4.536	80 5.027	85 5.675	90 6.362

ASD0500 - Resistencia de tracción (EN 1993-5)

		Código del tirante		ASD0500 -	M64/48	M68/52	M72/52	M76/56	M80/60	M85/63	M90/68	M95/70	M100/75
		Diámetro ideal la barra	ØD _g	mm	48	52	52	56	60	63	68	70	75
	9'0	Área inicial de la barra	A_g	mm^2	1.810	2.124	2.124	2.463	2.827	3.117	3.632	3.848	4.418
	تحا	Límite elástico de la barra	F_y	kN	905	1.062	1.062	1.232	1.414	1.559	1.816	1.24	2.209
0		Resistencia última de la barra	Fua	kN	1.194	1.402	1.402	1.626	1.866	2.057	2.397	2.540	2.916
SD0500		Resistencia de tracción	$F_{t,Rd}$	kN	848	968	1.062	1.232	1.376	1.559	1.771	1.924	2.209
SD		Código del tirante		ASD0500 -	M64/56	M68/60	M72/64	M76/68	M80/72	M85/75	M90/80	M95/85	M100/90
ASD		Código del tirante Diámetro ideal la barra	ØD ₉	ASD0500 - mm	M64/56 56	M68/60 60	M72/64 64	M76/68 68	M80/72 72	M85/75 75	M90/80 80	M95/85 85	M100/90 90
ASD	6'0:		ØD _g										
ASD	6,	Diámetro ideal la barra	. ,	mm	56	60	64	68	72	75	80	85	90
ASD	6'0=	Diámetro ideal la barra Área inicial de la barra	A_g	mm mm²	56 2.463	60 2.827	64 3.217	68 3.632	72 4.072	75 4.418	80 5.027	85 5.675	90 6.362

ASD0700 - Resistencia de tracción (EN 1993-5)

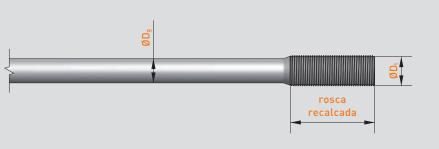
	Código del tirante		ASD0700 -	M64/48	M68/52	M72/52	M76/56	M80/60	M85/63	M90/68	M95/70	M100/75
	Diámetro ideal la barra	ØD _g	mm	48	52	52	56	60	63	68	70	75
9,0	Área inicial de la barra	A_g	mm²	1.810	2.124	2.124	2.463	2.827	3.117	3.632	3.848	4.418
<u>چ</u> اا	Límite elástico de la barra	Fy	kN	1.267	1.487	1.487	1.724	1.979	2.182	2.542	2.694	3.093
	Resistencia última de la barra	Fua	kN	1.629	1.911	1.911	2.217	2.545	2.806	3.269	3.464	3.976
0.200	Resistencia de tracción	$F_{t,Rd}$	kN	1.156	1.320	1.487	1.680	1.877	2.137	2.415	2.694	3.022
ă	Of diagonal all throats							a construir	1 4 0 E /E /			11100100
S	Código del tirante		ASD0700 -	M64/56	M68/60	M72/64	M76/68	M80/72	M85/76	M90/80	M95/85	M100/90
AS	Diámetro ideal la barra	ØD _g	Mm	M64/56 56	M68/60 60	M72/64 64	M76/68 68	M80/72 72	76	M90/80 80	M95/85 85	90
AS 0,9		$ \emptyset D_g $ $ A_g $										
4 6	Diámetro ideal la barra Área inicial de la barra		mm	56	60	64	68	72	76	80	85	90
A 6,0=	Diámetro ideal la barra Área inicial de la barra	A_g	mm mm²	56 2.463	60 2.827	64 3.217	68 3.632	72 4.072	76 4.536	80 5.027	85 5.675	90 6.362

^{*}Nota: los tamaños anteriores están normalizados, pero pueden acomodarse otras relaciones de barra y rosca para adaptarse a los requisitos del proyecto por ejemplo, para los requisitos la protección catódica o cargas menores de cálculo, la resistencia característica calculada por En1993 γ_{M0} = 1.0 & γ_{M2} = 1,25 y k_1 como se especifica.

21.220

más largos a petición

larger


diameters at request

130-160

DATOS DEL PRODUCTO

19.948

125-155

11.191

95-115

12.149

100-120

13.145

105-125

14.181

105-130

7.755

80-95

2.513

3.318

2.457

95

7.088

3.544

4.678

3.544

2.837

3.745

2.710

M110/100

100

7.854

3.927

5.184

3.927

3.181

4.199

2.976

105

8.659

4.330

5.715

4.330

3.181

4.199

3.181

110

9.503

4.752

6.272

4.752

3.544

4.678

3.544

115

10.387

5.193

6.855

5.193

3.927

5.184

3.849

M130/120

120

11.310

5.655

7.464

5.655

4.330

5.715

4.164

1135/125

125

12.272

6.136

8.099

6.136

4.752

6.272

4.492

M140/130

130

13.273

6.637

8.760

6.637

4.752

6.272

4.752

1145/135

135

14.314

7.157

9.447

7.157

5.193

6.855

5.186

140

15.394

7.697

10.160

7.697

5.655

7.464

5.551

4155/145

145

16.513

8.256

10.899

8.256

6.136

8.099

5.929

150

17.671

8.836

11.663

8.836

6.637

8.760

6.320

M165/155

155

18.869

9.435

12.454

9.435

8.556

85-100

9.395

85-105

10.274

95-110

M105/85	M110/90	M115/90	M120/95	M125/100	M130/105	M135/110	M140/115	M145/115	M150/120	M155/125	M160/130	M165+	
85	90	90	95	100	105	110	115	115	120	125	130		
5.675	6.362	6.362	7.088	7.854	8.659	9.503	10.387	10.387	11.310	12.272	13.273		
2.014	2.258	2.258	2.516	2.788	3.074	3.374	3.687	3.687	4.015	4.357	4.712	diámetros n peti	nas largos a ción
2.894	3.244	3.244	3.615	4.006	4.416	4.847	5.297	5.297	5.768	6.259	6.769	, , , , , , , , , , , , , , , , , , , ,	
1.899	2.094	2.258	2.515	2.740	2.974	3.218	3.471	3.687	4.007	4.290	4.582		
M105/95	M110/100	M115/105	M120/110	M125/115	M130/120	M135/125	M140/130	M145/135	M150/140	M155/145	M160/150	M165+	
95	100	105	110	115	120	125	130	135	140	145	150		
7.088	7.854	8.659	9.503	10.387	11.310	12.272	13.273	14.314	15.394	16.513	17.671		
2.516	2.788	3.074	3.374	3.687	4.015	4.357	4.712	5.081	5.465	5.862	6.273	diámetros n	nás largos a ción
3.615	4.006	4.416	4.847	5.297	5.768	6.259	6.769	7.300	7.851	8.422	9.012	pou	
2.516	2.788	3.074	3.374	3.687	4.015	4.357	4.712	5.081	5.465	5.862	6.273		
M105/80	M110/85	M115/90	M120/90	M125/95	M130/100	M135/105	M140/110	M145/115	M150/115	M155/120	M160/125	M165/130	M170+
80	85	90	90	95	100	105	110	115	115	120	125	130	
5.027	5.675	6.362	6.362	7.088	7.854	8.659	9.503	10.387	10.387	11.310	12.272	13.273	diámetros
2.312	2.610	2.926	2.926	3.261	3.613	3.983	4.372	4.778	4.778	5.202	5.645	6.106	más largos a
3.066	3.461	3.881	3.881	4.324	4.791	5.282	5.797	6.336	6.336	6.899	7.486	8.097	petición
2.271	2.505	2.751	2.926	3.261	3.557	3.849	4.152	4.467	4.778	5.131	5.480	5.841	
M105/95	M110/100	M115/105	M120/110	M125/115	M130/120	M135/125	M140/130	M145/135	M150/140	M155/145	M160/150	M165/155	M170+
95	100	105	110	115	120	125	130	135	140	145	150	155	
7.088	7.854	8.659	9.503	10.387	11.310	12.272	13.273	14.314	15.394	16.513	17.671	18.869	diámetros
3.261	3.613	3.983	4.372	4.778	5.202	5.645	6.106	6.584	7.081	7.596	8.129	8.680	más largos a
4.324	4.791	5.282	5.797	6.336	6.899	7.486	8.097	8.731	9.390	10.073	10.780	11.510	petición
3.261	3.613	3.983	4.372	4.778	5.202	5.645	6.106	6.584	7.081	7.596	8.129	8.680	
M105/80	M110/85	M115/90	M120/90	M125/95	M130/100	M135/105	M140/110	M145/110	M150/115	M155/120	M160/125	M165/130	M170+
80	85	90	90	95	100	105	110	110	115	120	125	130	
5.027	5.675	6.362	6.362	7.088	7.854	8.659	9.503	9.503	10.387	11.310	12.272	13.273	diámetros

15.256

110-135

16.370

115-140

17.524

120-145

18.716

125-150

M105/80	M110/85	M115/85	M120/90	M125/95	M130/100	M135/105	M140/105	M145/110	M150/115	M155/120	M160/125	M165/125	M170/130
80	85	85	90	95	100	105	105	110	115	120	125	125	130
5.027	5.675	5.675	6.362	7.088	7.854	8.659	8.659	9.503	10.387	11.310	12.272	12.272	13.273
3.519	3.972	3.972	4.453	4.962	5.498	6.061	6.061	6.652	7.271	7.917	8.590	8.590	9.291
4.524	5.107	5.107	5.726	6.379	7.069	7.793	7.793	8.553	9.348	10.179	11.045	11.045	11.946
3.350	3.696	3.972	4.438	4.835	5.248	5.679	6.061	6.590	7.072	7.570	8.085	8.590	9.167
M105/95	M110/100	M115/105	M120/110	M125/115	M130/120	M135/125	M140/130	M145/135	M150/140	M155/145	M160/150	M165/155	M170/160
M105/95 95	M110/100 100	M115/105 105	M120/110 110	M125/115 115	M130/120 120	M135/125 125	M140/130 130	M145/135 135	M150/140 140	M155/145 145	M160/150 150	M165/155 155	M170/160 160
95	100	105	110	115	120	125	130	135	140	145	150	155	160
95 7.088	100 7.854	105 8.659	110 9.503	115 10.387	120 11.310	125 12.272	130 13.273	135 14.314	140 15.394	145 16.513	150 17.671	155 18.869	160 20.106
95 7.088 4.962	100 7.854 5.498	105 8.659 6.061	110 9.503 6.652	115 10.387 7.271	120 11.310 7.917	125 12.272 8.590	130 13.273 9.291	135 14.314 10.020	140 15.394 10.776	145 16.513 11.559	150 17.671 12.370	155 18.869 13.208	160 20.106 14.074

RESISTENCIA CARACTERÍSTICA DE LOS TIRANTES DE

BARRA ASDO

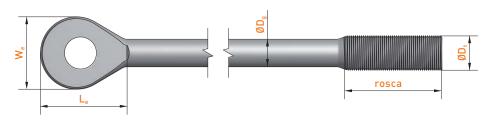
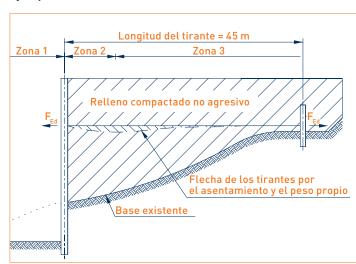



Tabla 3 - ojal forjado (todo tipo de acero)

Diámetro nominal del eje	ØD _g	mm	48	52	56	60	63	68	72
Ref. ojal		pulgadas	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2
Tipo de acero del ojal	T _e	mm	42	47	50	50	55	60	60
Longitud del ojal	L _e	mm	162	177	204	207	214	227	227
Anchura del ojal	W_{e}	mm	125	135	155	155	165	180	180
Diámetro del bulón (ASD0500)		mm	50	55	60	60	64	72	72

Ejemplo de cálculo

Criterios de diseño:

Carga máxima de cálculo del tirante F_{Ed} = 2.200 kN

Longitud del tirante = 45 m (calculada conforme a EN1997)

Carga característica de servicio

 $F_{t.ser} = 1.600 \text{ kN}$

Límite de extensión del tirante = 100 mm

Periodo de vida útil = 50 años

Coeficiente de la rosca - utilizar el valor recomendado $\,k_t$ = 0,6 (véase EN1993-5, anexo nacional del Reino Unido)

Selección del tamaño

Tamaño mínimo del tirante requerido - cláusula 7.2.3 EN1993-5

A partir del acero tipo ASD0500 k_t = 0,6 de la tabla 2, seleccione el ancla M100/75

Resistencia característica a tracción $F_{t,Rd}$ = 2.209 kN > 2.200 kN $\cdot \cdot \cdot$ OK

Rosca = M100 (área de tracción $A_s = 6.995 \text{ mm}^2$)

Eje = 75 mm de diámetro (área de tensión $A_a = 4.418 \text{ mm}^2$)

 $f_y = 500 \text{ N/mm}^2$, $f_{ua} = 660 \text{ N/mm}^2$

Nota: la cláusula 7.2.3(4) de EN1993-5 determina que las condiciones de diseño dadas no contemplan la posibilidad de que haya flexión en la rosca. EN1993 y EAU recomiendan que las uniones con el muro sean articuladas para proporcionar una tolerancia de rotación suficiente (también se debe considerar más articulaciones en puntos de máxima flexión a lo largo de la barra).

Es posible que se requiera comprobar la coexistencia de momento flector y esfuerzo axil tanto en la rosca como en el vástago, debido al asentamiento del relleno. El uso de roscas recalcadas y un factor k_t de 0,6 proporcionarán una mayor resistencia en áreas donde es probable que se produzca flexión, lo que aporta mayor seguridad. Para el ejemplo anterior, se puede utilizar la disposición del tirante que se muestra en la figura contigua al mismo.

Comprobación de la resistencia de servicio

Alargamiento con la carga característica de tracción

 $F_{t.ser} = 1.600 \text{ kN}$

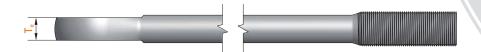
Tensión del vástago = $\frac{1.600 \times 10^3}{4.418} = 362 \text{ N/mm}^2$

Alargamiento = $\frac{362 \times 45.000}{205 \times 10^3}$ = 79 mm < 100 mm ·· OK

Siendo el módulo elástico = 205 kN/m²

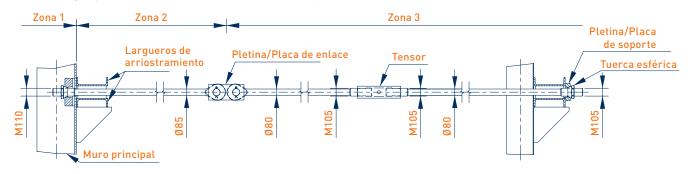
Consejo - si el alargamiento es demasiado grande, se debe intentar poner un diámetro mayor con acero de menor límite elástico.

Límite de capacidad de servicio - cláusula 7.2.4 de EN1993-5


La comprobación adicional de la resistencia de servicio requerida en este ejemplo va implícita en la comprobación de la resistencia $F_{Rd} < F_{Ed}$, ya que se ha empleado un factor k_t de 0,6. No obstante, se añade aquí por razones informativas.

$$F_{t,ser} \leq \frac{f_y \, A_s}{\gamma \, M_{t,ser}} \qquad \text{Donde As es la menor entre el área} \\ \qquad \qquad \text{del vástago o de la rosca}$$

$$1,600 \text{ kN} \le \frac{500 \times 4.418}{1,1 \times 10^3} \le 2.008 \text{ kN} \cdot \cdot \cdot \text{OK}$$


DATOS DEL PRODUCTO

75	80	85	90	95	100	105	110	115	120	125	130
3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2
63	66	72	75	80	85	90	95	100	105	115	120
248	262	289	312	332	340	357	370	382	412	440	460
190	210	230	240	255	270	275	290	300	310	330	340
75	80	85	90	95	100	100	110	115	120	120	130

Consideración de la resistencia contra la corrosión – para obtener robustez y simplicidad en el manejo y la instalación, se recomienda emplear protección catódica. El tirante está dividido en zonas, tal y como se ve en el diagrama más abajo. La tasa de corrosión que sufre cada zona depende de las condiciones locales, o se puede tener en cuenta la guía proporcionada en EN1993-5. Las tasas indicadas a continuación sirven únicamente como ejemplo. Se tienen en cuenta todas las zonas y

la tasa de corrosión esperada es añadida al tamaño mínimo, tal y como se ve en la tabla más abajo. Tenga en cuenta que la tasa de corrosión que sufre la zona 1 se puede reducir considerablemente colocando el cabezal de conexión del tirante en la parte anterior de la tablestaca, tal y como se muestra en la página 12 y en el detalle Z en la página 20.

Zona	Descripción	Entorno	Corrosión permitida	Tamaño mín.,	incl. corrosión		estándar más ercano
				Rosca	Barra	Rosca	Barra
1	Cabezal del ancla	Zona de salpicadura, agresiva	3,75 mm (de la tabla 4.2 EN1993-5)	107,5	82,5 mm	M110	85 mm
2	Muro inmediatamente posterior	Relleno compactado no ag- resivo, posibilidad de entrada de agua del mar a través de la unión al muro frontal	2,0 mm (supuestos)	-	79 mm	-	85 mm (misma barra que en la zona 1)
3	Resto del tirante	Relleno compactado no agresivo	1,2 mm (desde tabla 4.1 EN1993-5, se ignora la reduc- ción de la compactación por conservadurismo	102,4	77,4 mm	M105	80 mm

Especificación final

Se requiere como mínimo la siguiente información para especificar correctamente los tirantes.

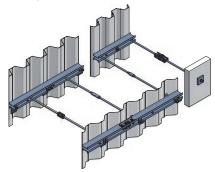
Tirantes:

Acero ASD0500 - M110/85, M100/80 con uniones articuladas, tensores y longitud igual a la indicada en el dibujo. Resistencia mínima de cálculo, $F_{t,Rd}$ = 2.200 kN (tras las pérdidas por corrosión)

 $k_t = 0.6$ (conforme con EN1993-5)

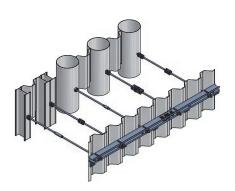
 $f_v = 500 \text{ N/mm}^2$

 $f_{ua} = 660 \text{ N/mm}^2$


Protección contra la corrosión = protección catódica para todas las barras y componentes, tal y como se indica

UNIONES TÍPICAS

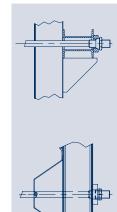
Uniones a las tablestacas


Las fuerzas se transfieren de la tablestaca a la barra del tirante mediante largueros de arriostramiento dispuestos a lo largo del muro. En el muro frontal, estas se colocan normalmente tras el mismo (en la parte de suelo retenido) y en el muro de anclaje en la parte no soportante.

Muro de acero en Z con tuerca esférica (articulado)

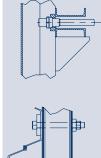
Uniones a muros pantalla de alto módulo resistente

Las fuerzas en el tirante son generalmente altas y se recomienda utilizar uniones articuladas para minimizar la flexión en la misma. Pueden proporcionarse articulaciones que permitan el movimiento vertical o en todas direcciones.


Unión del tirante en la parte anterior del muro de acero

Las cargas de las tablestacas se transfieren a los larqueros a través de los pernos de éstas. Después pasan al tirante por medio de una placa esférica de soporte con tuerca. La unión se coloca en la parte anterior del muro de acero, proporcionando mayor protección contra la corrosión.

Unión del tirante en la parte posterior del muro de acero


Las cargas de las tablestacas se transfieren directamente al tirante. Esto tiene la ventaja de que se necesitan menos pernos para largueros de arriostramiento al colocarse la unión del tirante fuera del muro, en la zona de corrosión agresiva.

Unión al muro de anclaie

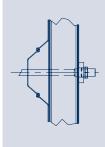
Las fuerzas del tirante se transfieren directamente al muro del tirante a través de los largueros de arriostramiento. Por lo general no se necesitan pernos para largueros de arriostramiento.

Muro de acero en U con tuerca esférica (articulado)

Unión del tirante en la parte anterior del muro de acero

Las cargas de las tablestacas se transfieren a los largueros a través de los pernos de éstas. Después pasan al tirante por medio de una placa esférica de soporte con tuerca. La unión se coloca en la parte anterior del muro de acero, proporcionando mayor protección contra la corrosión.

Unión del tirante en la parte posterior del muro de acero


Las cargas de las

tablestacas se transfieren directamente al tirante. Esto tiene la ventaja de que se necesitan menos pernos para largueros de arriostramiento al colocarse la unión del tirante fuera del muro, en la zona de corrosión agresiva.

Unión al muro de anclaje Las fuerzas del

tirante se transfieren directamente al muro del tirante a través de los largueros de arriostramiento. Por lo general no se necesitan pernos para largueros de arriostramien-

DATOS DEL PRODUCTO

Uniones a muros de hormigón

El alineamiento entre los puntos de unión del muro frontal y del muro de anclaje es crítico. Las conexiones articuladas simples permiten una fundición sencilla en el muro sin tener que realizar una difícil interrupción para los trabajos de moldeado, y permite una conexión fácil una vez que el muro esté recuperado. Se recomiendan encarecidamente las juntas articuladas para facilitar la instalación.

Uniones para muro combinadas y de diafragma (articuladas)

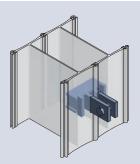
Muro combinado – ojal forjado encofrado

Una barra de ojal forjado se encofra en el tubo, transfiriendo las fuerzas al centro del mismo. Las barras del tirante se unen a la barra encofrada a través de las placas de enlace, posibilitando la articulación en dirección vertical.

Muro combinado – placa en T encofrada

Una placa en T de fábrica se encofra en el tubo, transfiriendo las fuerzas al centro del mismo. Las barras del ojal forjado del tirante se unen al conector T por medio de un tanque, posibilitando la articulación en dirección vertical. Véase la tabla 7 para más detalles.

Muro combinado y en D con caja esférica encofrada


Una caja esférica automática se encofra en el tubo, transfiriendo las fuerzas al centro del mismo. Las barras esféricas forjadas del tirante se conectan a la caja, permitiendo la articulación tanto en dirección vertical como en horizontal.

Conexiones del pilar HZ-M (articuladas)

Placas tensoras del muro HZ-M

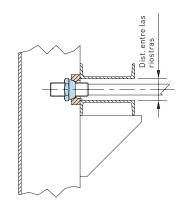
Se colocan placas tensoras automáticas y soldadas de fábrica en cualquiera de los lados de la red del HZ-M y pasan por orificios quemados en la ala. Las fuerzas se transfieren del radio de transición del HZ-M a la barra del ojal forjado del tirante mediante una conexión de lanque, y es posible una articulación en el plano vertical. Véase la tabla 6 para más detalles.

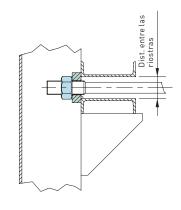
Viga tensora doble del muro HZ-M

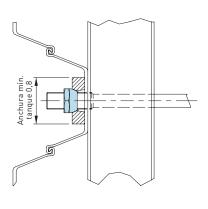
Se coloca una viga tensora soldada de fábrica en el soporte de las alas del HZ-M, cerca de la red y las placas tensoras, pasando por orificios quemados en la ala. Las fuerzas se transfieren a la barra del ancla mediante una conexión de langue, y es posible una articulación en el plano vertical.

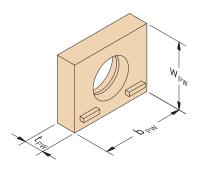
UNIONES

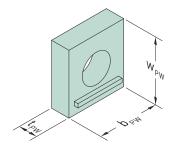
Tabla 4 - Placas de soporte estándar (ASD0500, k_t = 0,6)

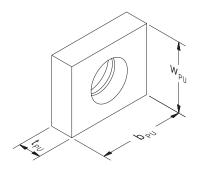

Diámetro nominal de la rosca			Métrico	64	68	72	76	80	85	90	95
	Anchura	W _{PW}	mm	160	160	180	180	180	200	200	200
Discount finite contract	Longitud	b_{PW}	mm	200	210	230	230	240	250	260	270
Placa esférica contra el larguero de arriostramiento	Grosor	t_{PW}	mm	30	30	35	40	40	50	55	55
targuero de arriostramiento	Máx. dist. entre las vigas de riostras²	W_{dist}	mm	100	100	120	120	120	140	140	140
Diámetro nominal de la rosca			Métrico	64	68	72	76	80	85	90	95
	Anchura	W _{PU}	mm	160	160	180	180	180	200	200	200
Placa esférica contra el	Longitud	b_{PU}	mm	170	180	200	200	200	210	210	220
larguero de arriostramiento	Grosor	t_{PU}	mm	30	30	35	40	40	50	55	55
targuero de arriostramiento	Máx. dist. entre las vigas de reparto²	W_{dist}	mm	100	100	120	120	120	140	140	140
Diámetro nominal de la rosca			Métrico	64	68	72	76	80	85	90	95
DI (()	Anchura	\mathbf{W}_{PC}	mm	220	240	250	260	290	300	330	340
Placa esférica contra el hormigón	Longitud	b_{PC}	mm	220	240	250	260	290	300	330	340
normgon	Grosor	t_{PC}	mm	30	35	35	35	35	40	40	45
Diámetro nominal de la rosca			Métrico	64	68	72	76	80	85	90	95
DI VI I I	Anchura	W _{PC}	mm	220	240	250	260	280	300	330	340
Placa estándar contra el hormigón	Longitud	b_{PC}	mm	220	240	250	260	280	300	330	340
Horningon	Grosor	t _{PC}	mm	30	35	35	35	40	40	45	45


Notas: 1. Todas las placas son de grado S355 y están basadas en la resistencia máxima de la rosca para ASD0500, $k_i = 0.6$. Para otros grados o $k_i = 0.9.*$


Tabla 5 - Tuercas hexagonales y esféricas (ASD0500)


	Diámetro nominal de la rosca		Métrico	64	68	72	76	80	85	90	95
	Esquinas transversales Planos transversales		mm	106	111	117	123	128	134	145	151
			mm	95	100	105	110	115	120	130	135
		Profundidad	mm	51	54	58	61	64	68	72	76


Placas de soporte estándar

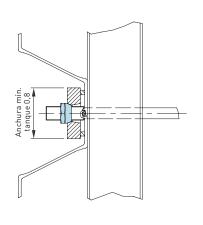


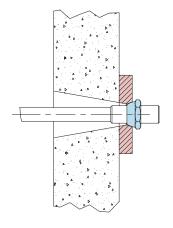
Placa estándar contra las riostras

Placa esférica / estándar contra el pilar en U (póngase en contacto con Anker Schroeder para las dimensiones)

^{2.} Un hueco entre los largueros mayor que esta distancia reducirá la resistencia de la placa.*

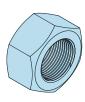
^{3.} Grado del hormigón asumido en C35/45, las dimensiones de la placa cambiarán para un hormigón de diferente grado.*

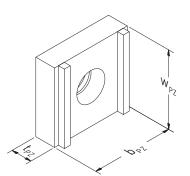

^{*}Le rogamos que se ponga en contacto con nuestro departamento técnico para más información.

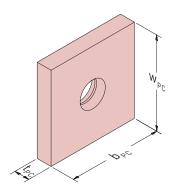


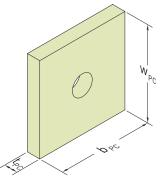
DATOS DEL PRODUCTO

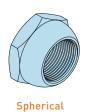
100	105	110	115	120	125	130	135	140	145	150	155	160
200	220	220	230	240	250	260	270	280	290	290	310	310
270	280	300	300	300	330	330	340	350	370	370	390	390
65	70	70	80	80	90	95	100	100	110	120	120	130
140	160	160	160	160	180	180	180	180	200	200	200	200
100	105	110	115	120	125	130	135	140	145	150	155	160
200	220	220	220	220	240	240	240	240	260	260	260	260
220	230	240	240	240	260	270	270	280	290	300	310	310
65	70	70	80	80	90	95	100	100	110	120	120	130
140	160	160	160	160	180	180	180	180	200	200	200	200
100	105	110	115	120	125	130	135	140	145	150	155	160
350	360	390	410	420	450	460	490	500	520	540	550	580
350	360	390	410	420	450	460	490	500	520	540	550	580
50	50	55	55	60	60	65	65	70	70	75	80	80
100	105	110	115	120	125	130	135	140	145	150	155	160
350	370	390	410	420	450	460	490	500	520	540	550	580
350	370	390	410	420	450	460	490	500	520	540	550	580
50	50	55	55	60	60	65	70	70	70	75	80	80


100	105	110	115	120	125	130	135	140	145	150	155	160
162	168	173	185	190	202	207	213	224	235	235	246	246
145	150	155	165	170	180	185	190	200	210	210	220	220
80	110	120	120	130	130	140	150	150	160	160	170	170




Tuercas hexagonales y esféricas


Hexagonal


Placa esférica / estándar contra el pilar en Z (póngase en contacto con Anker Schroeder para las dimensiones)

Placa esférica contra el hormigón

Placa estándar contra el hormigón

UNIONES

Tabla 6 - Placas en T para muros HZ-M (ASD0500, k_t = 0,6)

Diámetro nominal del eje		Métrico	48	52	56	60	63	68	72
Ref. ojal		pulgadas	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2
Anchura de las placas tensoras	b _{TP}	mm	130	145	160	170	170	185	185
Grosor de las placas tensoras	t _{TP}	mm	30	30	30	30	35	40	40
Anchura de las placas de soporte	b _{PP}	mm	110	110	140	140	140	170	170
Grosor de las placas de soporte	t _{PP}	mm	15	20	25	25	25	25	25
Longitud de las placas de soporte	l _{pp} *	mm	400	400	440	440	470	550	550
Diámetro del tanque		mm	50	55	60	60	64	72	72

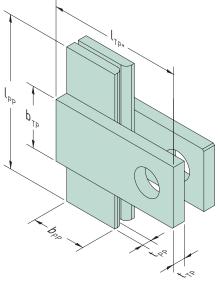
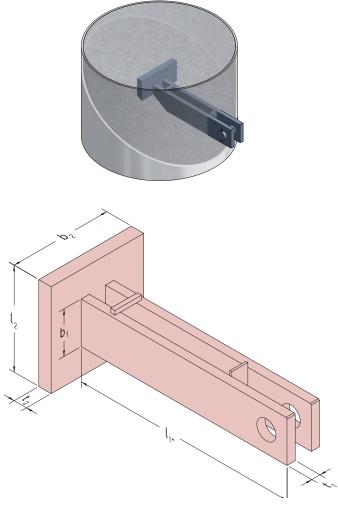

 $[*]L_{DD}$ basado en un perfil HZM de calidad S240GP con f_y 219 N/mm².

Tabla 7 - Anclas en T para muros combinados (ASD0500, $k_t = 0.6$)

Diámetro nominal del eje		Métrico	48	52	56	60	63	68	72
Ref. ojal		pulgadas	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2
Anchura de las placas	b ₁	mm	130	145	160	170	170	190	190
Grosor de las placas tensoras	t ₁	mm	30	30	30	30	35	40	40
Altura y anchura de las placas de soporte*	l ₂ x b ₂	mm	230	250	270	290	310	330	340
Grosor de las placas de soporte	t ₂	mm	35	40	45	45	50	50	55
Diámetro del tanque		mm	50	55	60	60	64	72	72


Tenga en cuenta el grado del hormigón asumido en C35/45, las dimensiones de las placas cambiarán según el grado - le rogamos que se ponga en contacto con nuestro departamento técnico para más información. Toda las placas son de acero S355 y bse basan en una resistencia máxima de la rosca para ASD0500, $k_t = 0.6$. Para otros grosores y $k_t = 0.9$, póngase en contacto con nuestro equipo técnico.

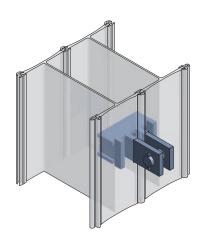
Placas en T para pilares HZ

 ${}^*l_{_{TP}}$ dependiendo del pilar en H y el tamaño nominal

Tirantes en T para muros combinados

*l, dependiendo el diámetro del tubo y el tamaño nominal

DATOS DEL PRODUCTO


								\ \\			
75	80	85	90	95	100	105	110	115	120	125	130
3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2
195	225	245	270	285	290	300	320	330	345	365	370
40	40	40	40	45	50	50	55	60	60	60	65
190	190	200	230	230	230	250	280	300	330	350	370
30	30	30	35	35	35	35	40	40	40	40	40
550	610	670	700	760	810	860	880	940	990	1060	1100
75	80	85	90	95	100	100	110	115	120	120	130

75	80	85	90	95	100	105	110	115	120	125	130
3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2
195	225	245	270	285	290	300	320	330	345	365	370
40	40	40	40	45	50	50	55	60	60	60	65
360	380	400	430	460	480	490	530	550	570	590	610
55	60	65	70	70	75	75	80	90	90	95	95
75	80	85	90	95	100	100	110	115	120	120	130

Otros conectores

UNIONES

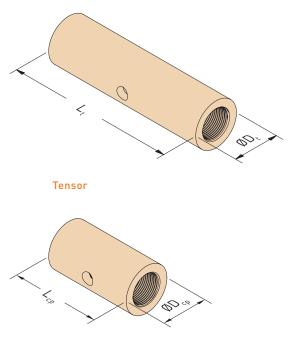
Tabla 8 - Tensor y acoplador (ASD0500, k_t = 0,6)

Diámetro nominal de la rosca		Métrico	64	68	72	76	80	85	90	95	100
Diámetro	ØDt & ØDcp	mm	95	102	102	108	114	121	127	133	146
Longitud del tensor estándar	L _t	mm	280	290	295	305	310	320	330	340	350
Ajuste del tensor estándar	+/-	mm	50	50	50	50	50	50	50	50	50
Longitud del tensor largo	L_{t}	mm	480	490	495	505	510	520	530	540	550
Ajuste del tensor largo	+/-	mm	150	150	150	150	150	150	150	150	150
Longitud del acoplador	L_{cp}	mm	130	140	145	155	225	235	245	255	275

Son posibles tensores con un ajuste más largo - le rogamos que se ponga en contacto con nuestro departamento de ventas para más información.

Tabla 9 - Templador articulado (ASD0500, $k_t = 0.6$)

Diámetro nominal de la rosca	1	Métrico	64	68	72	76	80	85	90	95	100
Longitud	L _{AT}	mm	500	510	540	650	670	680	690	720	760
Ajuste	+/-	mm	100	100	100	100	100	100	100	100	100
Anchura	W_{AT}	mm	175	180	185	190	195	215	235	240	255
Altura	H _{AT}	mm	140	155	165	175	190	195	200	215	240


Tabla 10 - Placas de enlace (ASD0500, $k_t = 0.6$)

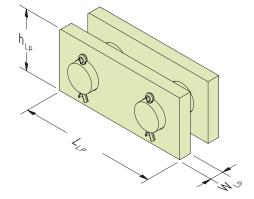
Diámetro nominal del eje	Dg		48	52	56	60	63	68	72	75	80
Ref. ojal		pulgadas	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4
Profundidad	W_{LP}	mm	30	30	30	30	35	40	40	40	40
Anchura	L_LP	mm	300	335	390	390	405	440	440	475	510
Altura	h _{LP}	mm	130	145	160	170	170	190	190	195	225
Diámetro del tanque		mm	50	55	60	60	64	72	72	75	80

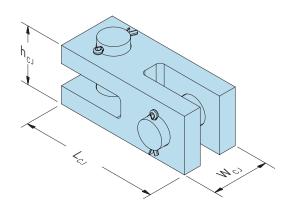
Tabla 11 - Junta cardan (ASD0500, $k_t = 0.6$)

Diámetro nominal del eje	Dg	mm	48	52	56	60	63	68	72	75	80
Ref. ojal		pulgadas	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4
Profundidad	L _{CJ}	mm	330	360	410	410	440	480	480	500	540
Anchura	W _{CJ}	mm	120	130	140	140	150	170	170	180	190
Altura	h _c ,	mm	120	130	140	140	150	170	170	180	190
Diámetro del tanque		mm	50	55	60	60	64	72	72	75	80

Todas las placas son de acero S355 y se basan en una resistencia máxima de la rosca para ASD0500, $k_t = 0,6$. Para otros grados y $k_t = 0,9$, póngase en contacto con nuestro equipo técnico.

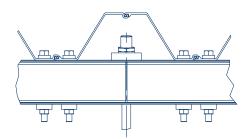
Manguitos

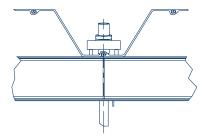

DATOS DEL PRODUCTO


105	110	115	120	125	130	135	140	145	150	155	160	165
152	159	165	171	178	191	191	203	203	216	216	229	241
360	370	380	400	410	420	430	440	450	460	475	485	495
50	50	50	50	50	50	50	50	50	50	50	50	50
560	570	580	600	610	620	630	640	650	660	675	685	695
150	150	150	150	150	150	150	150	150	150	150	150	150
285	295	305	320	330	340	350	360	370	380	395	405	415

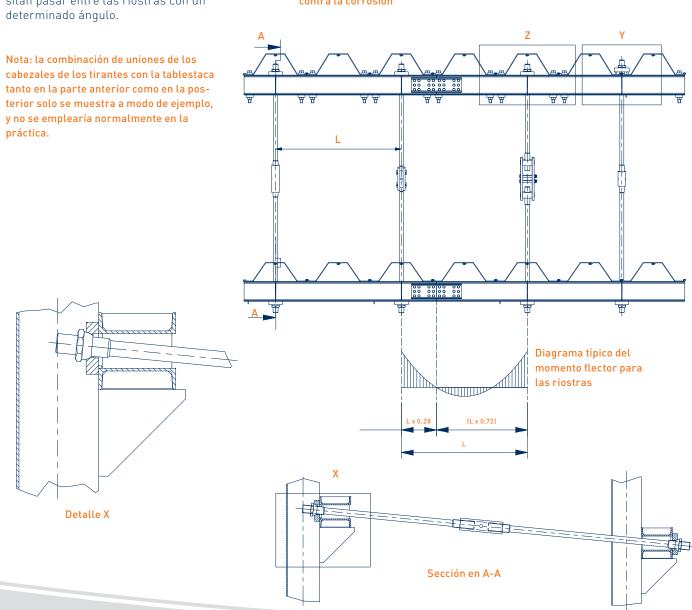
105	110	115	120	125	130	135	140	145	150	155	160	165
790	810	850	870	910	900	940	940	970	970	1010	1030	1050
100	100	100	100	100	100	100	100	100	100	100	100	100
260	265	275	280	305	320	325	350	360	370	380	380	415
260	270	295	305	325	320	345	340	365	365	390	400	410

85	90	95	100	105	110	115	120	125	130
4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2
40	40	45	50	50	55	60	60	60	65
570	625	660	675	705	730	750	795	840	860
245	270	285	290	300	320	330	345	365	370
85	90	95	100	100	110	115	120	120	130


85	90	95	100	105	110	115	120	125	130
4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2
570	610	660	680	700	750	780	810	870	910
200	210	220	240	250	260	270	280	290	300
200	210	220	240	250	260	270	280	290	300
85	90	95	100	100	110	115	120	120	130



LARGUEROS DE ARRIOSTRAMIENTO


Anker Schroeder puede suministrar sistemas de largueros completos para una gran variedad de configuraciones de muros. Los largueros normalmente incluyen dos perfiles U pareados de acero laminado y se disponen espaciados para permitir que los tirantes pasen entre los perfiles. En este espaciado debe caber el diámetro del tirante y el grosor de cualquier material de protección aplicado al mismo, así como cualquier espacio adicional requerido si los tirantes están inclinados y necesitan pasar entre las riostras con un determinado ángulo.

Detalle Z
Unión de tirantes en la parte anterior de la
tablestaca para una protección adicional
contra la corrosión

Detalle Y
Unión de tirantes en la parte posterior
de la tablestaca

ASDO

CONSIDERACIONES DE DISEÑO

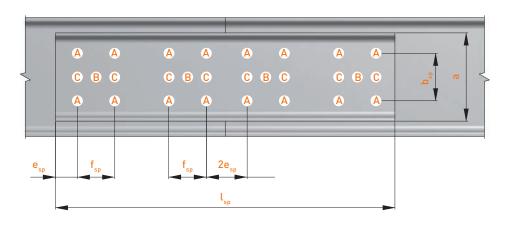
Se pueden realizar las uniones a una pantalla de tablestacas de dos maneras: por fuera del muro o dentro, tal y como se muestra a la izquierda. Generalmente, se prefieren los largueros de arriostramiento colocadas dentro del muro de retención, tanto por razones estéticas como para que, en caso de que un muro se vea afectado por mareas o agua de nivel fluctuante se eviten daños en los larqueros causados por embarcaciones.

Colocar largueros dentro del muro también permite conectar la barra del tirante dentro del muro, en el interior de una tablestaca. Esto aumenta enormemente la protección contra la corrosión para la unión del tirante principal. Véase el detalle Z.

Cuando se colocan los largueros de arriostramiento por detrás del muro frontal, es necesario emplear pernos de riostras y placas en todos los puntos de contacto entre las tablestacas y los largueros para asegurar que la carga se transfiera completamente a los largueros de arriostramiento.

Anker Schroeder suministra una gama completa de pernos de arriostramiento para aplicaciones de proyecto. Los cabezales de los pernos se forjan en la barra y, si éstas se colocan en la parte exterior del muro, proporcionan mayor protección contra la corrosión que las roscas expuestas, como las uniones de tuercas hexagonales.

Como simplificación de cálculo, los largueros de arriostramiento se pueden considerar continuas teniendo en cuenta los vanos extremos. De esta forma el arriostramiento es hiperestático y puede adoptarse un enfoque simplificado asumiendo un momento flector de valor wL2/10, utilizando como carga de cálculo aquella suminis-


trada por el sistema de anclaje que actúa como carga uniformemente distribuida, con L como el tramo entre los tirantes.

Cuando se comprueba el sistema de anclaje asumiendo la pérdida de un solo tirante, la carga del sistema de anclaje se evalúa en base a los requisitos necesarios para un análisis de estado límite de servicio, sin tolerancia para profundizaciones excesivas en el nivel de la excavación. Los momentos de flexión y las fuerzas resultantes en los tirantes se consideran como valores máximos y se aplican en los largueros de arriostramiento de longitud 2L.

En estas condiciones extremas, puede demostrarse que, a excepción de los tirantes en cualquiera de los extremos de los vanos externos, el momento flector en los largueros continuos resultante de la pérdida de cualquier tirante no superará 0,3 wL², donde w es la carga de apoyo calculada para estas condiciones y expresada como UDL y, por razones de simplificación, L es el tramo original entre los tirantes.

Los tamaños y los aceros típicos de los largueros de arriostramiento, junto con las resistencias de flexión teóricas, se indican en la tabla 12. Se pretende que estos valores se empleen únicamente para las estimaciones y proporcionen una evaluación inicial sobre qué sección de las riostras podría ser apta. Para una evaluación completa de los requisitos estructurales, debe llevarse a cabo un análisis más riguroso que tenga en cuenta factores como la torsión, los esfuerzos cortantes y los esfuerzos axiles.

UNIONES DE ARRIOSTRAMIENTOS

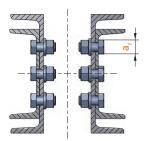
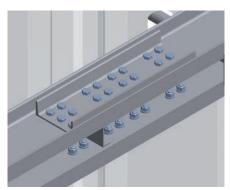



Tabla 12 - Uniones de empalmes de largueros

Ric	ostras		Conexiones de empalmes								
Sección	Módulo resis- tente cm³	Sección	l _{sp} mm	Patrón de taladros	b _{sp} mm	e _{sp} mm	f _{sp} mm	Cantidad	Pernos [DIN 7990]	Plano transversal hex. mm	
UPN180	300	UPN140	560	А	60	40	60	32	M20 x 45	30	
UPN200	382	UPN140	640	А	60	40	60	32	M20 x 45	30	
UPN220	490	UPN160	680	А	80	40	60	32	M20 x 45	30	
UPN240	600	UPN180	740	А	90	50	75	32	M24 x 50	36	
UPN260	742	UPN200	800	А	110	50	75	32	M24 x 50	36	
UPN280	896	UPN220	840	AB	120	50	90	40	M24 x 55	36	
UPN300	1070	UPN220	920	AB	120	50	90	40	M24 x 55	36	
UPN320	1358	UPN240	1000	AB	130	60	110	40	M30 x 65	46	
UPN350	1468	UPN260	1000	AB	140	60	110	40	M30 x 65	46	
UPN380	1658	UPN300	1000	AC	180	60	90	48	M30 x 65	46	
UPN400	2040	UPN300	1000	AC	180	60	90	48	M30 x 65	46	
UPN400	2040	UPN300	1000	AC	180	60	90	48	M30 x 65	4	

Los anteriores tamaños son los de uso más común. A petición pueden proporcionarse otras secciones.

Detalle del empalme de las riostras

Port, Reykjavik

Para obtener longitudes mayores, los largueros pueden unirse con mediante empalmes. Éstos deben colocarse a una distancia de 0,28 del espaciado de los tirantes desde la ubicación de un tirante, de esta forma su posición será cercana la de flector mínimo en los largueros. Deben encargarse los largueros con una longitud 100 mm superior a las medidas teóricas para acomodar cualquier movimiento de fluencia que pueda desarrollarse en el muro cuando se hincan las tablestacas. Las uniones de empalme se pueden soldar o unir con pernos. En este último caso, solo se taladra uno de los extremos de los largueros para que encaje con el patrón de taladro del empalme. El otro extremo se suministra sin perforar para cortar y taladrar in situ después de que se haya determinado la longitud real requerida. Cuando se usan tirantes inclinados, componente vertical de la carga en los mismos no debe ser ignorada y se deben tomar medidas para fijar los largueros, normalmente con soportes o soldadura. Cuando se usan muros de anclaje en tablestacas, se necesitan largueros de arriostramiento similares a las del muro de retención. Éstas se colocan siempre detrás de las tablestacas de anclaje y, por consiguiente, no son necesarios los pernos para arriostramiento. Cuando se encuentran cargas riostras mayores, por ejemplo, para muros combinados, Anker Schroeder puede ofrecer largueros de arriostramiento fabricados a partir de secciones de mayor inercia, como perfiles H. Nuestro departamento de ventas puede ser contactado para más información.

Cuando los largueros forman parte de la estructura permanente, pueden ser suministrados con recubrimientos de protección o, a menudo, protección catódica. Si se provee recubrimiento, se recomienda el uso de recubrimientos in situ tras la instalación.

PERNOS PARA ARRIOSTRAMIENTO

DATOS DEL PRODUCTO

Los pernos para arriostramiento están hechos de los mismos tipos de acero que ASD0355 y ASD0500. Los pernos pueden fabricarse con cabezales hexagonales forjados o extremos roscados, las longitudes se realizan a medida. Se proporcionan tuercas hexagonales estándar

Tabla 13 - Pernos para arriostramiento

Rosca	Paso de la rosca P	Área de tensión A _{sp}	Diámetro menor	Tipo de acero ASDO	Resistencia de tracción conforme a EN1993-5
Métrica	mm	mm²	mm		kN
24	4.0	045		355	200
36	4,0	817	55	500	259
/0	/ 5	/ F		355	274
42	4,5	1.121	65	500	355
45	/ F	1.306	70	355	320
45	4,5	1.300	70	500	414
48	5,0	1.473	75	355	361
40	3,0	1.475	73	500	467
52	5,0	1.758	80	355	430
JZ	3,0	1.730	80	500	557
56	5,5	2.030	85	355	497
	5,5	2.030	00	500	643
60	5,5	2.362	90	355	578
60	0,0	2.302	70	500	748
64	6,0	2.676	95	355	655
04	6,0	2.070	73	500	848

^{*}Puede aumentar si se utiliza ánodo de sacrificio como protección

Cabezal forjado de un perno para arriostramiento colocado fuera de la tablestaca para aumentar la resistencia a la corrosión Pernos de riostras para perfiles Apernos de riostras para perfiles Apernos perfiles laminados con forma laminados con forma quecada (Z) Apernos de riostras para perfiles laminados con forma quecada (Z) Apernos perfiles laminados con forma quecada (Z) Apernos perfiles laminados con forma quecada (Z) Apernos perfiles laminados con forma quecada (Z)

PROTECCIÓN CONTRA LA CORROSIÓN

Las estructuras marinas operan de forma inherente en entornos agresivos, y la elección de sistemas de protección robustos para los tirantes es clave para que una estructura sea longeva. Es muy importante considerar la protección contra la corrosión de los tirantes de barra en la fase de diseño, y es de particular importancia la unión al muro frontal, ya que el tirante está sujeto típicamente al entorno más agresivo en este punto, y esta es el área de fallos más común de un anclaje.

Las tablas 4-1 y 4-2 de EN1993-5 proporcionan una guía para los límites de corrosión en tablestacas de acero. Es una práctica aceptada usar estos mismos límites para los tirantes. La protección contra la corrosión para tirantes se puede proporcionar de diferentes maneras.

Protección catódica

Anker Schroeder considera que la protección catódica es la protección contra la corrosión más práctica y robusta. El vástago del tirante y el tamaño de la rosca aumentan en diámetro para permitir las pérdidas de acero por corrosión durante la vida útil de la estructura. No se requieren recubrimientos adicionales.

La siguiente figura muestra cómo la parte roscada del tirante en la zona de salpicaduras se ha aumentado en diámetro para compensar las pérdidas por corrosión esperadas. Este sistema es robusto, ya que no se requieren consideraciones especiales de transporte o ubicación..

Calculando con el acero ASD0500

Diámetro de vástago requerido 75mm

Diámetro de la rosca requerido

M100

Límite de corrosión en la zona del relleno

1,2 mm

Límite de corrosión en el cabezal

3.75 mm

Por tanto, tamaño del vástago del tirante requerido = 82,5 (tamaño estándar más cercano = 85 mm) y tamaño de la rosca M110. Por tanto, use ASD0500 M110/85

Nota: el vástago y la rosca se puden reducir conforme disminuye el índice de corrosión (véase página 11).

Tabla 14 - Límites de corrosión para los tirantes de acero

EN1993-5, Tabla 4-1 - Valor recomendado para la pérdida de grosor del acero (mm) debido a la corrosión en suelos con o sin aguas subterráneas.

Vida útil de diseño requerida	5 años	25 años	50 años	75 años	100 años
Rellenos no compactados y no agresivos (arcilla, esquisto, arena, limo)	0,18	0,7	1,2	1,7	2,2

Nota: para los rellenos compactados, EN1993-5 permite reducir a la mitad el índice de corrosión anteriores. EN1993-5, tabla 4-2 - Valor recomendado para la pérdida de grosor del acero (mm) debido a la corrosión en agua dulce o salada.

Vida útil de diseño requerida	5 años	25 años	50 años	75 años	100 años
Agua dulce común (ríos, canales de barcos) en la zona de alto ataque (línea de agua)	0,15	0,55	0,9	1,15	1,4
Agua dulce muy contaminada (canalizaciones, ca- nales industriales) en la zona de ataque alto (línea de agua)	0,3	1,3	2,3	3,3	4,3
Agua salada en un clima templado en la zona de ataque alto (zonas de agua baja y salpicadura)	0,55	1,9	3,75	5,6	7,5
Agua salada en un clima templado en la zona de inmersión permanente o en la zona intermareal	0,25	0,9	1,75	2,6	3,5
M110x6	M100x6	M M100×6	080		M100x6
		S.E.E		5	

CONSIDERACIONES DE DISEÑO

Sistemas de cintas de protección

El sistema de cintas de protección más usado sirve para cubrir los tirantes en una barrera protectora, como la cinta de petrolato (p. ej. Denso).

Anker Schroeder puede ofrecer barras de cintas de protección de petrolato, fabricadas pero se debe recordar que las uniones no se pueden encintar hasta que estén instaladas en la ubicación y pueden aumentar considerablemente el tiempo de la instalación.

El vulnerable cabezal del tirante solo puede protegerse completamente una vez que esté instalado, y a menudo esto es difícil de conseguir por las condiciones de la ubicación.

Es importante asegurar que se realice correctamente la protección para las uniones y el cabezal del tirante durante la instalación. Las áreas dañadas o no protegidas deben repararse antes del terraplenado.

Cualquier rotura en el sistema de protección puede conllevar una corrosión agresiva por picadura y fallos prematuros del ancla. Para más información, contacte con nuestro departamento técnico.

Galvanizado

Con la excepción del tirante ASD0700, los tirantes y componentes de Anker Schroeder pueden ser galvanizados en caliente conforme con EN ISO 1461, pero se deben considerar las roscas que no pueden tener más que un recubrimiento nominal de cinc. Póngase en contacto con nuestro departamento técnico para más detalles.

Pintura

Los tirantes pueden contar con cualquier sistema de pintura que pida el cliente, siempre que sea adecuado. Se deben considerar los posibles daños en el sistema de pintura durante el transporte y la instalación, ya que cualquier rotura en el sistema de protección puede causar corrosión por picadura.

Póngase en contacto con nuestro departamento técnico para más detalles.

Cintas de protección de anclas de fábrica

Placas en T galvanizadas

Almacenamiento de tirantes encintados

Ancla galvanizada

Cintas de protección de uniones in situ

Tirante pintada

INFORMACIÓN DE LA INSTALACIÓN

Almacenamiento de los tirantes

Los tirantes y los accesorios deben almacenarse y manipularse de tal manera que se evite la deformación excesiva, la corrosión, la exposición al calor (p. ej. oxicortes), la flexión o cualquier tipo de daños en los tirantes, los extremos roscados, los tensores o las tuercas.

Todas las piezas roscadas deben protegerse cuidadosamente contra el polvo, la suciedad y los daños. Limpie y compruebe a fondo todas las roscas antes de usarlas.

No se debe soldar ni oxicortes en los tirantes o los accesorios (tensores, acopladores, tuercas) sin el consentimiento de ASDO por escrito. Todos los tirantes y accesorios deben protegerse de los procesos con exposición al calor en la ubicación (p. ej. soldaduras o oxicortes).

Montaje

Las restricciones para los contenedores o el transporte terrestre significan por lo general que los tirantes se entregan en secciones, típicamente de 12 m o menores. si bien Anker Schroeder cuenta con enlaces ferroviarios directos v un acceso conveniente a los muelles portuarios, donde se pueden enviar longitudes mayores. Póngase en contacto con nuestro equipo técnico para más detalles. Las secciones se montan in situ de acuerdo con las longitudes del diseño. Se recomienda el montaje en una superficie dura y espaciosa con caballetes de poleas. Se debe tener mucho cuidado al asegurar que las roscas estén limpias y no presenten daños antes del montaje. Todas las uniones roscadas se deben realizar con un solape mínima de al menos 1x el diámetro de la rosca.

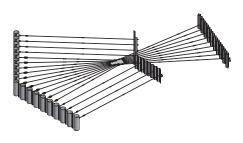
Instalación

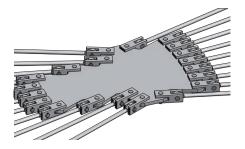
Los tirantes deben instalarse lo más cerca posible de la linea de fuerza que vayan a experimentar durante su funcionamiento. Deben tenerse en cuenta las fuerzas adicionales que introducirá el tirante al asentarse el relleno, especialmente las flexiones en la unión con el muro.

Las anclas largas deben elevarse empleando una viga de izado con soportes aprox. cada 4-6 m.

Asistencia in situ y formación

Anker Schroeder ofrece formación para el montaje, la instalación y el tensado, tanto en su instalación como en nuestra fábrica de Dortmund. Póngase en contacto con nuestro departamento técnico para más información.





Fabricaciones de anclajes

Anker Schroeder también puede suministrar unidades de distribución de anclajes para construcciones más complejas.

ASDO

INFORMACIÓN GENERAL

OTROS PRODUCTOS

Tirantes arquitectónicos inoxidables ASDO

Diámetro M12 - M76

Tirantes arquitectónicos estructurales ASDO

Diámetro M12 - M160

Diámetro M12 - M160

Diámetros hasta M160 y cargas de trabajo > 4.500 kN

Grilletes forjados ASDO

Capacidades de carga de trabajo de hasta 1.500 toneladas

Esta publicación proporciona información y detalles técnicos que Anker Schroeder emplea actualmente en la fabricación de sus productos.

Aunque hemos sido muy cuidadosos en la preparación de los datos que contiene esta publicación, no asumimos ningún tipo de responsabilidad por la integridad y exactitud de los mismos. El cliente debería decidir por sí mismo la adecuación del producto para sus requisitos. La publicación de estos datos no implica una oferta contractual.

En línea con la política de continuas mejoras de Anker Schroeder, la empresa se reserva el derecho a realizar modificaciones o correcciones en los detalles. Póngase en contacto con nuestro departamento técnico para más información o para asegurarse de que dichos detalles sean actuales.

Sostenibilidad

El acero es el material más reciclado en la construcción. Todos los materiales de los anclajes suministrados por Anker Schroeder proceden de acererías y, si es posible, hasta el 90% del acero fundido es reciclado. Una vez que una estructura alcanza el final de su vida útil de diseño, los tirantes de Anker Schroeder son 100% reciclables como materiales de chatarra. No obstante, se debe considerar el impacto económico y medioambiental de la extracción de la estructura.

