After the successful market introduction of the AZ®-700 sheet pile range and 10 years of proven track record, ArcelorMittal has taken a further step in the development of wider Z-piles. As a result, the AZ®-800 range has been presented to the market in 2015. Intensive testing before market introduction showed that installation can be performed with standard pile driving equipment. However, the optimum choice of a sheet pile section requires a more rigorous analysis of the soil conditions. Nowadays, the existing ArcelorMittal sheet pile range allows designers and contractors to choose amongst a variety of profiles to best cater for the particular site conditions. Soil characteristics and driving methods are closely linked and have to be considered carefully. This document provides guidance to users towards selecting the profile for best execution results.

In case of further questions, please contact our Technical Department, your local ArcelorMittal office and check our online library:

sheetpiling.arcelormittal.com
Geometry
of the sheet pile sections

AZ®-800

AZ 18-800

AZ 20-800

AZ 22-800

AZ 23-800

AZ 25-800

AZ 27-800

AZ®-750

AZ 28-750

AZ 30-750

AZ 32-750
Special features of the sheet pile sections

> 31 m rolling length possible, longer piles on request
> Delivery possible in exclusive ArcelorMittal steel grades S 460 AP and AMLoCor
> High quality crimping of double piles for special applications
> Excellent weldability because of low carbon equivalent value
> Proven interlocking system with enhanced water tightness

Section properties

<table>
<thead>
<tr>
<th>Section Width</th>
<th>Height</th>
<th>Thickness</th>
<th>Sectional area</th>
<th>Mass single pile</th>
<th>Moment of inertia</th>
<th>Elastic section modulus</th>
<th>Static moment</th>
<th>Plastic section modulus</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg/m</td>
<td>cm²/m</td>
<td>cm⁴/m</td>
<td>cm³/m</td>
<td>cm³/m</td>
<td></td>
</tr>
<tr>
<td>AZ®-800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ 18-800</td>
<td>800</td>
<td>449</td>
<td>8.5</td>
<td>8.5</td>
<td>129</td>
<td>80.7</td>
<td>100.9</td>
<td>41320</td>
<td>3</td>
</tr>
<tr>
<td>AZ 20-800</td>
<td>800</td>
<td>450</td>
<td>9.5</td>
<td>9.5</td>
<td>141</td>
<td>88.6</td>
<td>110.7</td>
<td>45050</td>
<td>3</td>
</tr>
<tr>
<td>AZ 22-800</td>
<td>800</td>
<td>451</td>
<td>10.5</td>
<td>10.5</td>
<td>153</td>
<td>96.4</td>
<td>120.5</td>
<td>48790</td>
<td>3</td>
</tr>
<tr>
<td>AZ 23-800</td>
<td>800</td>
<td>474</td>
<td>11.5</td>
<td>9.0</td>
<td>151</td>
<td>94.6</td>
<td>118.2</td>
<td>55260</td>
<td>2</td>
</tr>
<tr>
<td>AZ 25-800</td>
<td>800</td>
<td>475</td>
<td>12.5</td>
<td>10.0</td>
<td>163</td>
<td>102.6</td>
<td>128.2</td>
<td>59410</td>
<td>2</td>
</tr>
<tr>
<td>AZ 27-800</td>
<td>800</td>
<td>476</td>
<td>13.5</td>
<td>11.0</td>
<td>176</td>
<td>110.5</td>
<td>138.1</td>
<td>63570</td>
<td>2</td>
</tr>
<tr>
<td>AZ®-750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ 28-750</td>
<td>750</td>
<td>509</td>
<td>12.0</td>
<td>10.0</td>
<td>171</td>
<td>100.8</td>
<td>134.4</td>
<td>71540</td>
<td>2</td>
</tr>
<tr>
<td>AZ 30-750</td>
<td>750</td>
<td>510</td>
<td>13.0</td>
<td>11.0</td>
<td>185</td>
<td>108.8</td>
<td>145.0</td>
<td>76670</td>
<td>2</td>
</tr>
<tr>
<td>AZ 32-750</td>
<td>750</td>
<td>511</td>
<td>14.0</td>
<td>12.0</td>
<td>198</td>
<td>116.7</td>
<td>155.6</td>
<td>81800</td>
<td>2</td>
</tr>
</tbody>
</table>

1) Classification according to EN 1993-5. Class 1 is obtained by verification of the rotation capacity for a class-2 cross-section.

A set of tables with all the data required for design in accordance with EN 1993-5 is available from our Technical Department.
Choice of section

Once the static calculation is done and section modulus, pile length as well as steel grade are defined, it has to be checked, whether length of pile and section modulus are adequate for installation in the given soil conditions.

A well prepared geotechnical investigation should always be the basis for design and pile driving evaluation.

The following graph shall provide guidance for pile selection with respect to driving conditions.

Drivability of sheet piles in regard to length, soil conditions, section modulus and delivery form (pairs) for standard sheet pile walls is shown in the graph adapted from chapter eleven of the ArcelorMittal Piling Handbook, 9th edition, where further details and recommendations can be found.

As general rule of thumb it can be assumed that: “the recommended sheet pile length in [cm] corresponds to the section modulus in [cm³/m]”. However, soil conditions have to be checked carefully.

Example: AZ 18-800

> 1840 cm³/m section modulus;
> Recommended length max. 15-18 m for soil condition “Easy”.

Please note: this rule of thumb does not apply to combined walls, but is given only for standard sheet pile walls. For HZ®-M type or other combined walls, installation has to be checked rather in regards to existing soil conditions and required length of piles.

The wider piles will have less plugging effect at the pile toe in certain soil conditions, but more surface friction has to be expected. Changing from an AZ 26-700 to an AZ 25–800 will increase the surface area by roughly 9%. This should be considered when choosing the driving equipment.

Installation aids, like water jetting or pre-drilling, can be foreseen, depending on prevailing soil conditions.

Water jetting is most effective in non-cohesive soils, while pre-drilling should be considered rather for cohesive soils. Both methods will facilitate installation, reduce necessary piling energy and minimize the effect of vibrations along adjacent buildings.
Installation methods

Vibrator and impact hammer

Installation of the AZ®-800 & AZ®-750 piles is possible with all standard installation methods:
> vibrating
> impact hammering
> pressing

Installation with vibratory hammer

The dimensioning of piling equipment is generally driven by equipment availability and contractor’s experience. Calculation formulae or curves and tables can be found in the ArcelorMittal Piling Handbook or in the recommendations of the machine manufacturers.

The connection between pile and vibratory hammer is the clamping device. The clamping force shall be more than 1.2-times the centrifugal force (in kN) of the vibratory hammer. The surface of the clamps shall be large enough and not worn-off to prevent damage to the pile head.

Installation is still often done with a single-clamp setup, gripping the pile over the middle interlock.

This method introduces forces out of the center of gravity of the wall and causes bending in the pile head, as well as additional friction in the adjacent interlocks. The use of single clamps is acceptable, but the preferred option should always be a double clamping system, to avoid damage to piles and driving equipment.

For piles with a width of 700 mm and larger, ArcelorMittal recommends the use of double clamps for double-Z piles, as the energy loss due to flapping ends can cause slower installation progress.

The benefit of using double clamps is especially given when installing AZ-800 double piles.

In addition, it is recommended to have the piles crimped or welded to avoid differential movements of the double pile under the clamps.

Turning plates for the different web angles are available from all major piling equipment manufacturers. In case of need, ArcelorMittal can provide contact details.

Dimensioning of driving forces can be done according to the existing methods, but close attention has to be paid to the soil conditions.

In soil conditions that are prone to plugging, horizontal stiffening plates or strips can be affixed slightly recessed from top or bottom end of pile. This is beneficial as the effects on pile driving caused by the soil plug is reduced. Hence, aiding in achieving installation tolerances (e.g. wall length, inclination, design depth).

Installation with impact hammer

Today’s standard machines are either hydraulic or diesel hammers; steam hammers are no longer in use. Fast-acting air-driven hammers are available and can be used for all pile sizes.

It is essential to use a correctly sized driving cap. The cap shall cover all of the pile area, leaving free the outside interlocks. The driving of double piles is to be preferred. The driving cap must be sufficiently rigid to transfer safely the impact energy from the hammer into the pile. Driving caps can be custom-made by the contractor, requested from the hammer manufacturer or can be obtained from ArcelorMittal on request for the use with diesel or free-fall hammers. Care shall be taken not to over-stress the pile or the cap during driving.
Installation methods

Driving caps

Sheet pile sections and corresponding driving caps

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>D<sup>1</sup></th>
<th>D<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving caps</td>
<td>ZD 800 A</td>
<td>ZD 800 B</td>
</tr>
</tbody>
</table>

AZ[®]-800 sections

AZ 18-800	✓	✓
AZ 20-800	✓	✓
AZ 22-800	✓	✓
AZ 23-800	✓	✓
AZ 25-800	✓	✓
AZ 27-800	✓	✓

AZ[®]-750 sections

AZ 28-750	✓
AZ 30-750	✓
AZ 32-750	✓

¹ D = Double pile.
² Availability to be checked at time of order placement.

Sliding guides

Sliding guides are designed to guide the driving cap along the leader, thus guaranteeing proper alignment of the hammer in the centre of the driving cap. The adaptation to the leader is normally carried out on-site.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Designation</th>
<th>Corresponding driving caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>500/90</td>
<td>700/90</td>
<td>410</td>
</tr>
<tr>
<td>840</td>
<td>460</td>
<td>ZD 800 A-weld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZD 800 B-weld</td>
</tr>
</tbody>
</table>

Arrangement of driving caps

- a = dolly/cushion
- b = leader
- c = sliding guide
- d = driving cap
- e = leader slide

The leader slide (e) is not provided by ArcelorMittal.
Installation methods
Pressing

Installation by pressing

Especially in inner-city areas, pressing has become a standard vibration-free installation technology. Two types of presses are available on the market:

- self-walking presses;
- leader guided systems.

The width limitation of the self-walking systems today is at 1.40 m, length limitation of the section depends on the soil conditions, but is normally between 15-19 m. Pre-drilling and water-jetting are possible to improve the working progress.

Leader guided presses do exist for the AZ-800/AZ-750 profile series. The availability of equipment has to be checked with the specific manufacturers. It should be considered that more surface friction has to be overcome with the wider piles and that the pressing machine must have sufficient rigidity and power reserves to press the piles in the ground safely.

Pressing and vibrating can be facilitated by filling the interlock with lubricants, such as Beltan®Plus, grease or foam. A bolt at the end of the leading interlock in driving direction also prevents soil from entering the interlocks, as densified soil inside the interlocks may cause additional resistance while driving.

Self-walking press

Leader guided pressing system

Closing interlocks with foam or grease

Bolt inserted in leading interlock
Soil conditions

A well prepared soil investigation is key to a successful project.

Combined walls

Combined walls consist of high-inertia and massive primary elements, like HZ®-M beams, sheet pile box piles or tubes, with standard sheet piles as intermediary sheet piles in between.

The new AZ 20-800, AZ 25-800, AZ 30-750 and their derivates can be used as intermediary piles for combined walls.

The preferred choice of intermediary sheet pile is the AZ® double pile. Because of the location of the middle interlock, a natural rotation capacity is given.

The maximum theoretical swing α in every Larssen interlock is 5°, depending on the length of pile. The rotation is only geometrical, no additional tension is introduced into the section. A special crimping setup allows keeping the rotation capacity in the lower part of the sheet pile in case piles are ordered with crimping from the mill.

According to the standard delivery conditions based on EN 10248, the tolerance of a double pile is $\pm 3\%$ of the pile width:

<table>
<thead>
<tr>
<th>Width</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ 18</td>
<td>1.26 m</td>
</tr>
<tr>
<td>AZ 18-700</td>
<td>1.40 m</td>
</tr>
<tr>
<td>AZ 18-800</td>
<td>1.60 m</td>
</tr>
</tbody>
</table>

For a combined wall system this means that a difference of 7-10 cm can occur, with marginal material deformation.

System width example: HZ 1080M A-12 / AZ 25-800

In hard soil conditions, toe strengthening can be taken into account. In addition pre-drilling or water jetting might be necessary to install the intermediary piles safely.

In general, the intermediary piles have 70-80 % of the length of the king piles; the exact length shall always be determined for each specific project.

For lifetime reasons, a minimum wall thickness of 10 mm in freshwater or seawater structures should be considered.
ArcelorMittal has a technical department with vast design and installation experience available to assist with any queries that may arise.

A full suite of technical documentation, such as the ArcelorMittal Piling Handbook, HZ*-M brochure and calculation programs are available for download at the following address:

> sheetpiling.arcelormittal.com

In case of further questions or clarifications, please contact your local ArcelorMittal representative or our Technical Department at:

> sheetpiling@arcelormittal.com
AZ®-800 | AZ®-750
A success story made in Europe
Project references

AZ®-800 & AZ®-750

<table>
<thead>
<tr>
<th>Project location</th>
<th>Section</th>
<th>Application</th>
<th>Total tonnage</th>
<th>Productivity Piles/day</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limelette, BE</td>
<td>AZ 25-800</td>
<td>Pile driving test</td>
<td>20</td>
<td>n.a.</td>
<td>12-13</td>
</tr>
<tr>
<td>Goole, GB</td>
<td>AZ 30-750</td>
<td>Flood protection</td>
<td>1300</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Lauwersoog, NL</td>
<td>AZ 30-750</td>
<td>Quay wall</td>
<td>670</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Penang, MY</td>
<td>AZ 30-750</td>
<td>Erosion protection</td>
<td>13750</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Biblis, DE</td>
<td>AZ 20-800</td>
<td>Flood protection</td>
<td>1500</td>
<td>20-30</td>
<td>17</td>
</tr>
<tr>
<td>Saint-Laurent-du-Var, FR</td>
<td>AZ 25-800</td>
<td>Flood protection</td>
<td>2590</td>
<td>n.a.</td>
<td>18</td>
</tr>
<tr>
<td>Bocholt, BE</td>
<td>AZ 20-800</td>
<td>Erosion protection</td>
<td>2740</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Vlissingen, NL</td>
<td>AZ 23-800</td>
<td>Quay wall</td>
<td>400</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Brussels, BE</td>
<td>AZ 27-800</td>
<td>Parking</td>
<td>450</td>
<td>n.a.</td>
<td>21</td>
</tr>
<tr>
<td>Oslo, NO</td>
<td>AZ 23-800</td>
<td>Railway tunnel</td>
<td>2900</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Zeeland, NL</td>
<td>AZ 25-800</td>
<td>Pile driving test</td>
<td>10</td>
<td>n.a.</td>
<td>23</td>
</tr>
<tr>
<td>Hamburg, DE</td>
<td>AZ 25-800</td>
<td>Foundation works</td>
<td>240</td>
<td>n.a.</td>
<td>24</td>
</tr>
<tr>
<td>Amsterdam, NL</td>
<td>AZ 18-800</td>
<td>Retaining wall</td>
<td>1200</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Cape Town, ZA</td>
<td>AZ 25-800</td>
<td>Pile driving test</td>
<td>7</td>
<td>n.a.</td>
<td>26</td>
</tr>
<tr>
<td>Usedom, DE</td>
<td>AZ 25-800</td>
<td>Quay wall</td>
<td>375</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Bremerhaven, DE</td>
<td>AZ 25-800</td>
<td>Quay wall</td>
<td>620</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>Copenhagen, DK</td>
<td>AZ 30-750</td>
<td>Pile driving test</td>
<td>6</td>
<td>n.a.</td>
<td>29</td>
</tr>
<tr>
<td>Rabat, MA</td>
<td>AZ 25-800</td>
<td>Parking</td>
<td>1320</td>
<td>4-8</td>
<td>30</td>
</tr>
<tr>
<td>Antwerp, BE</td>
<td>AZ 18-800</td>
<td>Bank protection</td>
<td>260</td>
<td>8-10</td>
<td>31</td>
</tr>
<tr>
<td>Stuttgart, DE</td>
<td>AZ 18-800</td>
<td>Retaining wall</td>
<td>448</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>Leiden, NL</td>
<td>AZ 18-800</td>
<td>Erosion protection</td>
<td>720</td>
<td>20-30</td>
<td>33</td>
</tr>
<tr>
<td>Karlsruhe, DE</td>
<td>AZ 18-800</td>
<td>Road tunnel</td>
<td>3944</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>Lokeren, BE</td>
<td>AZ 18-800</td>
<td>Underpass</td>
<td>373</td>
<td>20</td>
<td>35</td>
</tr>
</tbody>
</table>
Project references
AZ®-800

Pile driving test | Limelette
Belgium | 2015

Section
> AZ 25-800, comparison with AZ 26-700 and AZ 26-700N, 22.0 m length, S 355 GP

Type of structure
> Pile driving test

Equipment
> Vibratory hammer PVE 40VM
> Double clamp

Soil conditions
> Silty clayey sand, middle dense in the upper part
Project references
AZ®-800

Pile driving test | Limelette
Belgium | 2015

Section
> AZ 25-800, comparison with AZ 26-700 and AZ 26-700N, 22.0 m length, S 355 GP

Type of structure
> Pile driving test

Equipment
> Hydraulic hammer IHC S90
 installation depth 8 m to 17 m

Soil conditions
> Dense sand with hard layers in the lower strata

Job details
> Pile driving test with different sheet pile sections to prove drivability in hard soil conditions; admissible tension was not exceeded and installation speed was very uniform
Chantry Cottages | Goole
Great Britain | 2015

Section
> AZ 30–750, 11.0 m length, S 355 GP, approx. 1300 t

Type of structure
> Flood protection

Equipment
> PVE 38M vibratory hammer
> Standard frequency, 1200 kN centrifugal force, 38 kgm eccentric moment
> Single clamp

Soil conditions
> Sand, clay, SPT 20–30 blows

Job details
> Quick execution, 2-level driving guide
> Choice of section for durability reasons
Project references
AZ®-750

Haven 22 | Lauwersoog
The Netherlands | 2016

Section
> AZ 30-750, 20.0 m length, S 430 GP, approx. 670 t

Type of structure
> Quay wall with shiplift

Equipment
> PVE 2319VM vibratory hammer
> High frequency, 1100 kN centrifugal force, 0–19 kgm eccentric moment
> Single clamp DWK150T

Soil conditions
> Silty sand, SPT 30–40 blows

Job details
> Maximum 10 minutes driving time per double pile
> Installation from land and water
> 1-level guiding frame
Land reclamation | Penang
Malaysia | 2016

Section
> AZ 30-750 / AZ 20-800 / AZ 25-800, 9.0 m up to 30.0 m length, S 430 GP, approx. 13750 t

Type of structure
> Erosion protection

Equipment
> Vibratory hammer ICE 1412B with double clamp

Soil conditions
> Dredged sand overlaying soft marine sediments

Job details
> Installation of 2 km cantilever Sheet Pile wall as erosion protection of an artificial island
> Pile driving from landside with 1-level guiding frame
> Installation of vertical drains to consolidate the soil
> Average installation performance up to 12 double piles per day
Weschnitzdeich | Biblis
Germany | 2016

Section
> AZ 20-800, 9.0–12.0 m length, S 240 GP, approx. 1500 t

Type of structure
> Flood protection

Equipment
> Müller MS 32HFV vibratory hammer
> High frequency, 1980 kN centrifugal force, 0–32 kgm eccentric moment
> Double clamp

Soil conditions
> Backfill (loose), sand, SPT 10–20 blows

Job details
> High installation performance: 20–30 double piles per day
> Interlocks filled with Beltan® Plus
> Use of Dixeran declutching detectors

Example how to check pile driving in regard to length and soil conditions
Project references

AZ®-800

Flood protection | Saint-Laurent-du-Var

France | 2016

Section

> AZ 20-800 / AZ 23-800 / AZ 25-800, 15.0 m length, S 355 GP, approx. 2590 t

Type of structure

> Flood protection

Equipment

> PTC 23HFV vibratory hammer
> High frequency, 1360 kN centrifugal force, 0-23 kgm eccentric moment
> Single and double clamp
> Delmag D 19-52 diesel hammer with ArcelorMittal driving cap

Soil conditions

> Backfill (compact), sand, SPT > 45 blows

Job details

> Driving test to prove performance of new AZ-800 piles
> Installation with vibratory hammer and diesel hammer
> 2-level guiding frame
> Successful installation of AZ 20-800 in very hard ground conditions
Canal rehabilitation | Bocholt
Belgium | 2016

Section
> AZ 20-800^0.5, 6.0 m and 8.0 m length, S 355 GP, approx. 2740 t

Type of structure
> Erosion protection

Equipment
> ICE 8RFSH vibratory hammer
> Normal frequency, 436 kN centrifugal force, 0–7.5 kgm eccentric moment
> Single clamp, excavator-mounted with swivel head

Soil conditions
> Sand (loose), clay (soft)

Job details
> Cantilever wall for erosion protection along a canal
> Installation with floating equipment
> 1-level driving guide
> Performance: up to 25 double piles per day
Project references
AZ®-800

Quarleshaven | Vlissingen
The Netherlands | 2016

Section
> AZ 23-800, 23.0 m length, S 355 GP, approx. 400 t

Type of structure
> Quay wall

Equipment
> PVE 2350VM vibratory hammer
> High frequency, 2900 kN centrifugal force, 0-50 kgm eccentric moment
> Double clamp PPK175T

Soil conditions
> Dense sand with stones, stiff clay, CPT > 30 MPa

Job details
> Tube-combi-wall for new quay structure in very hard ground conditions
> Installation of tubes with PVE110 and IHC S200 hydraulic hammer
> 1-level driving guide
> Performance: up to 8 AZ-800 double piles per day
> Waterjetting or pre-drilling not permitted
Project references

AZ®-800

Parking „Spiegel / Mirroir“ | Brussels

Belgium | 2016

<table>
<thead>
<tr>
<th>Section</th>
<th>Equipment</th>
<th>Soil conditions</th>
<th>Job details</th>
</tr>
</thead>
<tbody>
<tr>
<td>> AZ 27-800, 6.5 m–16.0 m length, S 355 GP, approx. 450 t</td>
<td>> Piles placed in a CSM wall (Cutter Soil Mix) with PTC 30HFV</td>
<td>> Sandy silty clay</td>
<td>> Anchoring not possible due to surrounding buildings</td>
</tr>
<tr>
<td>Type of structure</td>
<td>Soil conditions</td>
<td>Job details</td>
<td>> Anchoring not possible due to surrounding buildings</td>
</tr>
<tr>
<td>> Permanent retaining wall for 3 level underground car park</td>
<td>> Sandy silty clay</td>
<td>> Top-down construction method used, where the basement floors act as strutting system</td>
<td>> Installation in a soil-mix-wall to prevent vibrations damaging surrounding buildings and to achieve water tightness during excavation</td>
</tr>
<tr>
<td>Job details</td>
<td>Soil conditions</td>
<td>Job details</td>
<td>> Installation in a soil-mix-wall to prevent vibrations damaging surrounding buildings and to achieve water tightness during excavation</td>
</tr>
<tr>
<td>> Anchoring not possible due to surrounding buildings</td>
<td>> Sandy silty clay</td>
<td>> Interlocks will be seal-welded after excavation</td>
<td></td>
</tr>
</tbody>
</table>
Project references
AZ®-800

Follobanen | Oslo
Norway | 2016

Section
> AZ 23-800, up to 18.0 m length, S 430 GP, approx. 2900 t

Type of structure
> Railway tunnel

Equipment
> ICE 2B8F, regular frequency machine with 1624 kN centrifugal force
> RTG19 with MRV105 vibrator
> Leader-guided pressing was used in sensitive areas

Soil conditions
> Soft clays in the upper layers, SPT 10-20 blows, granite bedrock in the lower strata

Job details
> Sheet piles as permanent and temporary retaining structures for railway tunnel construction
> Use of Beltan®Plus sealing system
> Rockbolting as pile toe support
> Pile splicing up to 54.0 m length
> Productivity: up to 16 double piles per day
Project references
AZ®-800

Pile driving test | Zeeland
The Netherlands | 2016

Section
> AZ 20-800 and AZ 25-800, 16.0 m length, S 430 GP

Type of structure
> Pile driving test

Equipment
> Resonator RD260 with single and double camp

Soil conditions
> Clays and sand, medium dense soil

Job details
> Successful pile driving test to verify the drivability of the AZ-800 sheet pile range with the new resonating pile driving method
Foundation works steel mill | Hamburg

Germany | 2017

Section
> AZ 25-800, up to 20.8 m length, S 240 GP, approx. 240 t

Type of structure
> Retaining wall

Equipment
> PTC 30HFV with 1641 kN centrifugal force and hydraulic drop hammer

Soil conditions
> Sand, medium dense soil

Job details
> AZ 25-800 used as intermediary sheet pile for a combined wall with HZ 880M A & B
> Foundation of new walking beam furnace, installation close to existing structures
Project references
AZ®-800

Foundation | Amsterdam
The Netherlands | 2017

Section
> AZ 18-800, AZ 25–800 up to 17.8 m length, S 240 GP, approx. 1200 t

Type of structure
> Canal embankment and retaining wall

Equipment
> Hydraulic 4 cylinder leader-guided pressing system

Soil conditions
> Loose to medium dense sand, reclaimed

Job details
> Tender demanded installation without vibration
> Pressing is done in two steps with two machines to guarantee correct wall alignment
> Average productivity: 8 double piles per day
Project references
AZ®-800

Pile driving test | Cape Town
South Africa | 2017

Section
> AZ 25-800, 12.0 m length, S 430 GP

Type of structure
> Pile driving test

Equipment
> Vibratory hammer PTC 23HF3 with 1360 kN centrifugal force
> Single clamp

Soil conditions
> Fine sand, ferruginised sand, SPT 45 blows

Job details
> Pile test to prove drivability of the new sections in subtropical soil conditions
Quay wall | Usedom
Germany | 2017

Section
> AZ 25-800, up to 28.25 m length, S 390 GP, approx. 375 t
> HP400x122, length 22.0 m used as anchor piles, approx. 185 t

Type of structure
> Quay wall

Equipment
> Vibratory hammer Müller MS 23HFV with turning plate and double clamp
> Hydraulic hammer IHC S35

Soil conditions
> Organic soil, dense sand, stiff clay

Job details
> Sheet pile wall with one anchor level, installation on water, all equipment on barge
> Splicing of HP piles on job site to final length of 50.5 m
> Presence of obstacles in the working area
> Average installation performance 6 double piles per day
Project references

AZ®-800

Westkaje | Bremerhaven

Germany | 2017

Section

- AZ 22-800, up to 22.45 m length, S 355 GP, approx. 620 t
- King piles 1620 x 16, up to 27.2 m length, S 355 J2H, approx. 2934 t
- HTM 600 x 136 as anchor pile, length up to 55.0 m, inclination 1:1, S 355 J2+M, approx. 1095 t

Type of structure

- Quay wall

Equipment

- Vibratory hammers MS 32HFV and MS 48HFV, leader-guided with double-clamp setup
- IHC S70 and S90 hydraulic hammers

Soil conditions

- Existing backfill, middle dense to dense sand, followed by hard silt layers
- Obstacles by old structures in the ground were encountered all over the construction area and had to be removed

Job details

- Demolition and rebuilding of 500 m existing quay wall, including deepening of the existing quay by 2.0 m
- Removal of numerous old foundation structures in the ground
- Delivery of anchor piles in partial length, splicing on site to final length, used as friction piles without jet-grouting
- Total construction time 18 months; installation done on land and on water
- Average installation performance for intermediary piles: 6 AZ double piles per day
Project references
AZ®-750

Pile driving test | Copenhagen
Denmark | 2018

Section
> AZ 30–750, 13.5 m length, S 355 GP, approx. 6 t

Type of structure
> Pile driving test

Equipment
> Junttan SHK 100-6 hydraulic hammer, leader-guided on PMx22 base carrier with adapted driving cap and drilling attachment

Soil conditions
> The upper layer consists of silty sand, lower layer is mainly soft to medium stiff silty clay

Job details
> Pile test using multiple measuring devices to check vibration around the piling machine
> Piling very close to existing pipeline, distance < 1.0 m, with and without predrilling
> Predrilling with auger diameter 300 mm in the middle of a double pile
> Vibration impact significantly lower when predrilling is used
Project references
AZ®-800

Underground car park | Rabat
Morocco | 2018

Section
> AZ 25-800, 22.5 m length, S 430 GP, approx. 1320 t

Type of structure
> Temporary retaining wall

Equipment
> PVE 40VM vibratory hammer with turning plate and double clamps
> Predrilling with 350 mm diameter
> Two-level driving guide

Soil conditions
> The soil consists of sand, followed by medium stiff clay and fine medium dense to dense sand.
> Obstacles have been found between 8–12 m depth

Job details
> For the construction of a new underground car park, a temporary sheet pile wall is installed
> Filling of interlocks to facilitate later pulling-out of the sheet piles
> Deep-laying obstacles are removed with the help of the drilling machine
> Average daily production rate: 4–8 piles
Project references
AZ®-800

Bank protection | Antwerp
Belgium | 2018

Section
> AZ 18-800, 18.5 m length, S 355 GP, approx. 260 t

Type of structure
> Bank protection at oil terminal

Equipment
> PVE 50VM vibratory hammer with single clamp
> IHC S90 impact hammer with special driving cap for AZ-800 sections

Soil conditions
> Silty clayey sand, partially dense

Job details
> Construction of a new retaining wall at the oil terminal
> Coating applied on the first 3 meters of the sheet pile wall
> Filling of interlocks to reduce friction during pile driving
> Average production rate: 8–10 piles per day
Retaining wall | Stuttgart
Germany | 2018

Section
> AZ 18-800, 10.0 m length, S 240 GP, approx. 448 t
> AZ 32-750, 14.2 m length, S 240 GP, approx. 1010 t

Type of structure
> Retaining wall

Equipment
> ABI TM22 with vibratory hammer
> MRZV 30VV with single clamp
> Drilling rig LB24 with CFA attachment

Soil conditions
> Sand and gravel in the upper layers, penetration of pile toe into limestone formation

Job details
> Retaining wall with flood protection function for a railway crossing, in the frame of the “Stuttgart 21” project
> Predrilling to allow pile toe penetration into limestone
> Daily production up to 20 double piles
Project references
AZ®-800

Erosion protection | Leiden
The Netherlands | 2018

Section
> AZ 18-800, up to 13.0 m length, S 355 GP, approx. 720 t
> AZ 20-800, up to 11.0 m length, S 355 GP, approx. 320 t

Type of structure
> Canal embankment

Equipment
> ICE 14RF vibratory hammer with single clamp

Soil conditions
> Loose silty sand with peat lenses

Job details
> Replacement of an existing concrete wall by a long lasting anchored steel sheet pile wall
> Daily production 20–30 double piles
Project references
AZ®-800

Road tunnel | Karlsruhe
Germany | 2018

Section
> AZ 18/20/23/25-800
> AZ 28-750
> Up to 21.5 m length, S 240 GP, approx. 3944 t

Type of structure
> Inner city road tunnel

Equipment
> Sheet pile placed in slurry wall
> Vibratory hammer Müller MS 32HFV as auxiliary piling machine

Soil conditions
> Gravel, silty sand

Job details
> Construction of a tunnel for a new metro line in the city center using sheet piles placed in a slurry wall
> Permanent sheet pile wall, acting as load bearing element, concrete connection by welded shear force transmitting elements
> High demand for watertightness
> Limited space for construction and storage
> Daily production up to 14 double piles, depending on productivity of excavation works
Project references
AZ®-800

Underpass | Lokeren
Belgium | 2018

Section
> AZ 18-800 and AZ 25-800,
 3.2 m up to 12.4 m length,
 S 355 GP, approx. 373 t

Type of structure
> Underpass of railway line
 with access ramps

Equipment
> Various excavator mounted vibratory
 hammers (PVE, Movax)

Soil conditions
> Loose silty sand

Job details
> Vertical sheet pile installation in the tunnel
 area, inclined sheet pile installation 1:5
 in the area of the ramps for aesthetical
 reasons

> Prefabricated connection elements for
 the special piles parts of the wall
> Pipes for inclinometer measurements
 preassembled
> Temporary tubular struts until
 concrete base slab installed
> Welding of interlocks after installation
 to achieve watertightness
> Productivity up to 20 double piles
 per day
Please refer to our website to download all our documentation: sheetpiling.arcelormittal.com or contact us via E-mail: sheetpiling@arcelormittal.com
Disclaimer

The data and commentary contained within this steel sheet piling document is for general information purposes only. It is provided without warranty of any kind. ArcelorMittal Commercial RPS S.à r.l. shall not be held responsible for any errors, omissions or misuse of any of the enclosed information and hereby disclaims any and all liability resulting from the ability or inability to use the information contained within. Anyone making use of this material does so at his/her own risk. In no event will ArcelorMittal Commercial RPS S.à r.l. be held liable for any damages including lost profits, lost savings or other incidental or consequential damages arising from use of or inability to use the information contained within. Our sheet pile range is liable to change without notice.

Printed on FSC paper. The FSC label certifies that the wood comes from forests or plantations that are managed in a responsible and sustainable way (the FSC principles promote the social, economical, environmental and cultural needs of today’s and the next generations). www.fsc.org