ASD

TIE BARS FOR MARINE STRUCTURES

Large Diameter Articulated Tie Bars 3" - 6.5" Diameter

BIG

dÌ.

Tebs :

H.

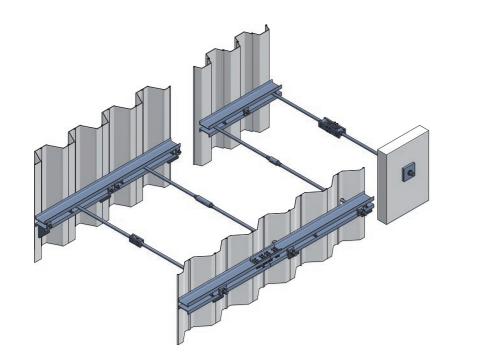
STAN SA

Since 1920

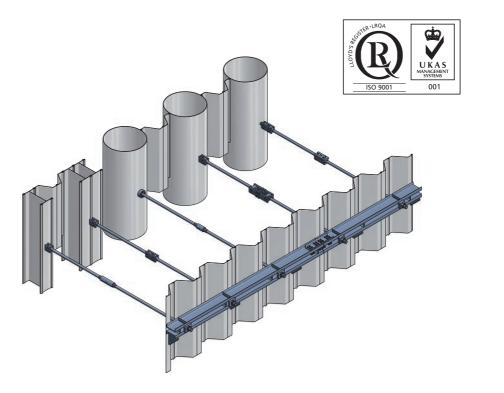
US Design with Customary Units

ASDO TIE BARS FOR MARINE STRUCTURES

Anker Schroeder manufacture large diameter tie bars for retaining structures such as bulkheads, quaywalls, abutments, berths and crane runways. Our tie bars range in diameter from 3" to 7" (M76 to M170) and can be supplied in standard grades 355 & 500 equivalent to 50 & 72 ksi with higher grades available on request. Anker Schroeder tie bars are manufactured from round steel bar with forged or threaded ends that allow a variety of connections to be made to sheet piles, tubes, H-piles, combi-walls and concrete diaphragm walls.


STEEL GRADES

Anker Schroeder offer 2 standard steel grades for tie bars:

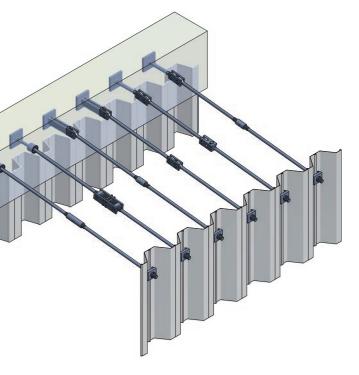

Steel grades	Thread Diameter	Yield Strength	Tens
• ASD0355	2.5" - 6.3" M64 - M165	50 ksi 355 N/mm²	5
• ASD0500	2.5" - 6.5" M64 - M170	72 ksi 500 N/mm²	6

other grades are available - please contact our sales team if required

Depending on diameter and length required, Anker Schroeder tie bars are manufactured using selected fine grained steel, high strength low alloy steel or quench and tempered steel. The choice of steel is dependent upon your specific project requirements, but the above minimum properties will be met. All tie bars and components are manufactured to a quality system audited and accredited to ISO 9001 and can be manufactured to meet the requirements of EN1090 and CE marked if required.

Z-pile and U-pile solutions

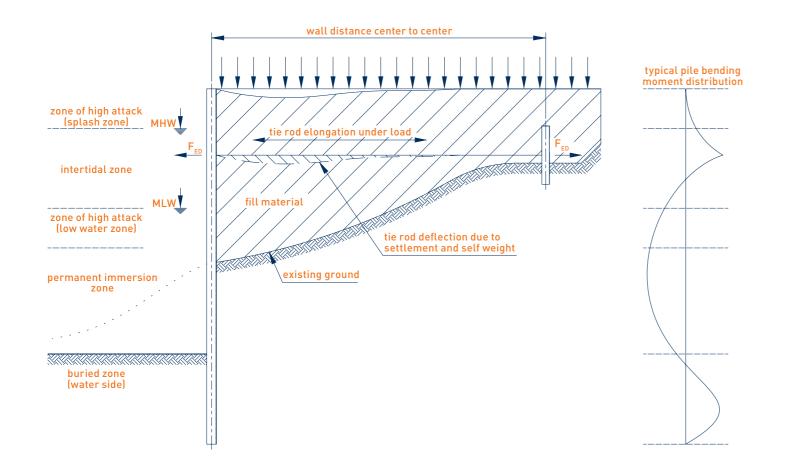
High modulus wall solutions



ASD OVERVIEW

nsile Strength

75 ksi 510 N/mm²


96 ksi 660 N/mm²

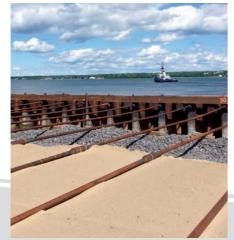
Concrete wall solutions

ASDO TIE BARS FOR MARINE STRUCTURES

When designing tie bars for retaining walls the following should be considered:

Design Resistance – the anchorage should be designed to provide sufficient design resistance to satisfy the design load required (note the design resistance or capacity is calculated differently between design codes).

Serviceability – the elongation of the tie bars under the serviceability load


may be the limiting factor rather than design resistance particularly where large crane loads have to be accommodated. Stiffness of a tie bar is a function of the shaft diameter and subsequently a higher grade steel may not be the most suitable. Movement under imposed loads may be reduced in many cases by preloading the anchors at the time of

installation to develop the passive resistance of the ground.

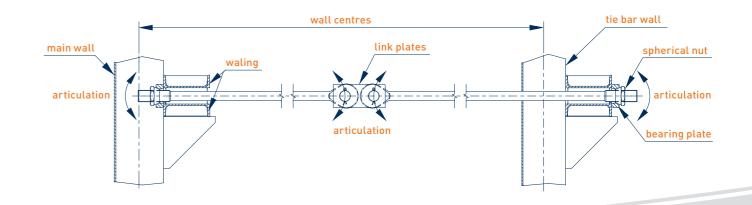
Pre-loading of the anchor is most easily achieved at a threaded end of the tie bar by means of a hydraulic jack, consideration to the practicality of this should be made at design stage.

Puerto Caucedo, Dominique

Port de Trois-Rivières, Canada

Stressing operation

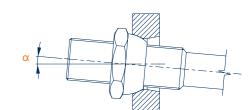
Settlement - the effect of sag of the tie bar and forced deflection due to settlement of fill may induce significant bending stresses at a fixed anchorage and increase the tensile stress in the tie rod locally. Shear stresses may also be induced into the thread if a tie rod is displaced when the fill settles causing compound stresses, which must be allowed for in the detailed design. This can often be overcome by provision of articulated joints at connections to the wall.


Whether a connection is articulated or fixed will affect the design resistance of the tie bar. If connections are fixed, then a greater thread size must be used to accommodate any bending introduced to the tie bar.

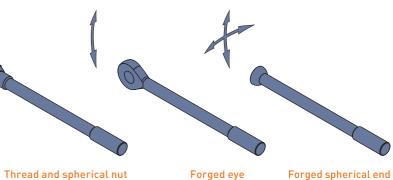
Settlement ducts can also be installed to reduce bending at the connection, however these can be difficult and expensive to install and, if not aligned correctly, will not prevent settlement bending being introduced. If settlement ducts are used articulation at the wall. connection is recommended to prevent bending due to the self weight of the bar as the duct moves. Further corrosion protection systems (such as wrapping) are essential, particularly where there is a possibility of the duct acting as a conduit for seawater. Please contact our technical department for more information.

Bending stress induced by settlement or misalignment

Typical articulated end solutions by Anker Schroeder:



ASD


DESIGN **CONSIDERATIONS**

Corrosion protection system

Anchor tie bars are typically used in aggressive environments and consequently corrosion protection factors influencing effective life must be considered. Consideration of the corrosion protection of the tie bar at design stage and in particular the connection to the front wall is important as the tie bar is typically subjected to the most aggressive environment at this point. Options include sacrificial steel, protective tape or coating systems. In most cases, sacrificial steel provides the more economic and robust form of corrosion protection – see page 24 for more detail.

Articulation removes bending stress at connection $\alpha < 7^{\circ}$

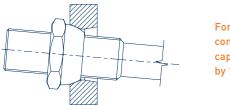
TENSILE RESISTANCE OF TIE BARS

Calculation of the tie bar load capacity depends on the design philosophy and codes of practice being followed. Care should be taken that tie bar loads generated by Allowable Stress Design (ASD) are not used if calculating tie bar capacities using Load & Resistance Factor Design (LRFD) and vice versa.

Design codes also differ between countries – broadly, projects in Europe must be designed to Eurocodes (EN1993-5) whilst projects in North America to various codes and guidance such as United States Army Corps Of Engineers (USACE) EM1110-2-2504 (Chapters 5 & 6).

For information the two design approaches and codes are explained briefly below, but engineers should take care that the correct approach is selected for their particular project and local design regulations.

DESIGN RESISTANCE OF TIE BARS EFFECT OF SETTLEMENT


Most design codes recognise that for typical marine structure tie bars there is a high risk that bars can be subjected to bending at the stiff connection point to the sheet pile wall as settlement of fill occurs. This is particularly important as this is generally the location of the threaded portion of the tie bar which is inherently the weaker part of the system.

For 'fixed' connections thread capacity reduced by 40% for Eurocode and by 60% for USACE

Eurocodes give guidance as to whether the load capacity of the threaded part of a tie bar should be reduced based on the connection type to the wall- whether it is fixed' or 'articulated' (ie allowed to rotate to reduce bending)

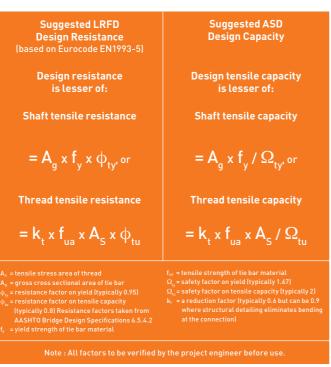
Typically the full tensile design capacity of the thread is reduced by applying a thread factor kt of 0.6 (ie the capacity is reduced by 40%). This is similar to USACE guidance (EM1110-2-2504 Ch. 6, eq. 6.13), which states that the allowable stress in a thread should be calculated as $f_t = 0.4 x$ yield stress of the bar.

EN1993-5 gives further guidance in stating that if "the structural detailing of the location where the anchor rod is joined to the wall is such that bending moments are avoided at that location" the thread factor can be reduced to 0.9. Typically in practice the 0.6 factor is kept along with articulation as a conservative approach.

For 'articulated' connections thread capacity reduced by 10%

Deadman tie bars are generally long members (typically > 60 ft) and the requirement to increase the thread size to allow for possible additional loads at the wall can result in an inefficient tie bar design. For traditional threaded bars, the shaft must be a minimum of the pitch diameter of the thread to be formed (eg 3 ¾" for a 4" rolled thread) this is fixed and cannot be changed and hence must be the same along the whole length. However the increase in section size is only required at the ends of the bar and so the additional steel along the majority of the length (shaft) is often not economic.

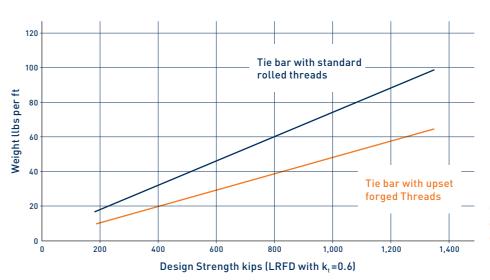
standard rolled thread $A_s = A_g$ fixed ratio A_s/A_g



upset forged thread $A_s > A_g$ variable ratio A_s/A_g

Upset forged thread advantage – stress area of thread > stress area of shaft

With upset forging only the ends of the tie bar are increased in section as shown above. Anker Schroeder have developed a range of high strength bars with upset forged threads that allow a variety of thread diameters to shaft diameters. Upset forging allows threads to be increased in size with little additional weight being added to the tie bar. By increasing the diameter bending stresses can be minimised and sacrificial steel can be easily added to the threaded portion, often the most vulnerable part of a tie bar.


Only upset forged threads ensure that the shaft is the weakest part of a tie bar anchor. This has benefits as, in the unfortunate event of structural failure, the shaft will realise it's full elongation capacity giving greater warning of serviceability failure of the pile wall.

Anker Schroeder recommended calculation methods are shown above for calculating the load capacity of a deadman tie bar – this method has been used in determining the load capacity values in table 2 on pages 8 & 9.

ASD

DESIGN CONSIDERATIONS

Upset forging

Unlike traditional forging in which a parent metal is heated and forged into a smaller dimension, upset forging is a process by which parent metal is increased in sectional area. In the case of tie bars, this allows the ends to be increased in section and threads cut or rolled onto the forged cylinder. The same process can also be used to form articulated ends such as eyes or spherical ends.

Chart showing the weight per metre advantage for upset forged tie bars compared to standard threaded tie bars.

ASDO TIE BAR DESIGN CAPACITIES

Bar with upset threaded ends – individual lengths available up to 70 ft, depending on grade and diame-ter (turnbuckles/couplers used for longer lengths).

Table 2 – Tie Bars with upset forged threads

Nominal upset thread diameter	٥D	mm	64 2.5	68	72	76	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	Ø٦
Nominat upset tirread diameter																										
Thread tensile stress area		in ²	4.15 2,676	4.74	5.36	6.03	6.73	7.67	8.67	9.72	10.84	12.02	13.26	14.56	15.92	17.35	18.83	20.37	21.98	23.65	25.37	27.16	29.01	30.92	32.89	•
Thread tensite stress area	As	mm²	2,676	3,055	3,460	3,889	4,344	4,948	5,591	6,273	6,995	7,755	8,556	9,395	10,274	11,191	12,149	13,145	14,181	15,256	16,370	17,524	18,716	19,948	21,220	As
Shaft diameters available																										All grades
Shall diameters available	All grades	mm	48-56	52-60	52-64	56-68	60-72	64-76	68-80	72-86	76-90	80-95	85-100	85-105	95-110	95-115	100-120	105-125	105-130	110-135	115-140	120-145	125-150	125-155	130-160	All grades

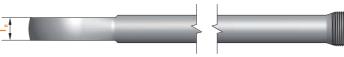
ASD0355 – Design Information

im 1n 1g 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.5 4.5 4.7 4.9 5.1 0dp 11gross area 11m 128 3.3 3.8 4.6 5.0 5.6 6.0 5.6 6.3 7.0 7.8 8.9 9.9 9.9 11.0 12.2 13.4 1.7 1.10 1.2 13.1 1.10 12.27 13.01 12.27 13.02 1	555 – Design Information																									
mm 48 52 56 60 64 68 72 76 80 85 90 90 95 100 105 115 120 125 <	ASD0 code		ASD0355 -	M64/48	M68/52	M72/56	M76/60	M80/64	M85/68	M90/72	M95/75	M100/80	M105/85	M110/90	M115/90	M120/95	M125/100	M130/105	M135/110	M140/115	M145/115	M150/120	M155/125	M160/130	M165+	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Optimum chaft diamatar	Ød	in	1.9	2.0	2.2	2.4	2.5	2.7	2.8	3.0	3.1	3.3	3.5	3.5	3.7	3.9	4.1	4.3	4.5	4.5	4.7	4.9	5.1		Ød
ft gross area A mm ² 1.810 2.124 2.443 2.827 3.217 3.632 4.072 4.536 5.027 5.675 6.362 7.088 7.854 8.659 9.503 10.387 11.310 12.272 3.273 ttyjeld capacity P_r kips 144 169 177 226 227 270 232 3.24 3.174 2.08 5.66 6.27 691 7.78 8.27 8.27 8.27 8.27 8.27 6.77 6.377 6.37 6.362 6.362 6.56 6.271 6.971 7.83 9.00 1.911 1.911 1.927 1.017 1.522 1.018 1.131 1.272 3.017 1.017 1.017 1.12 1.131 1.272 3.017 3.01 3.01 3.01 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.127 1.131 1.137 1.131 1.131 <t< td=""><td>optimum shart diameter</td><td>μug</td><td>mm</td><td>48</td><td>52</td><td>56</td><td>60</td><td>64</td><td>68</td><td>72</td><td>76</td><td>80</td><td>85</td><td>90</td><td>90</td><td>95</td><td>100</td><td>105</td><td>110</td><td>115</td><td>115</td><td>120</td><td>125</td><td>130</td><td></td><td>Øug</td></t<>	optimum shart diameter	μug	mm	48	52	56	60	64	68	72	76	80	85	90	90	95	100	105	110	115	115	120	125	130		Øug
mm ² mm ² lill 2/24 2/63 2/17 3/63 4/07 2/56 5/07 6/362 7/88 8/659 9/801 10/387 10/387 11/310 12/272 13/73 try jeld capacity P kip 14/4 169 11/42 1.289 1.445 1.610 1.784 2.014 2.258 2.516 2.78 3.074 3.374 3.687 3.687 4.015 4.015 4.015	Shaft gross area	٨	in²	2.8	3.3	3.8	4.4	5.0	5.6	6.3	7.0	7.8	8.8	9.9	9.9	11.0	12.2	13.4	14.7	16.1	16.1	17.5	19.0	20.6		٨
If yield capacity F, KN 642 754 874 1,040 1,142 1,289 1,610 1,784 2,258 2,516 2,788 3,074 3,687 3,687 4,015 4,317 4,120 1,130 1,130 1,131 1,131 1,131 1,131 1,131 1,137 1,070 1,527 77 5,78 7,78 <td>Shart gross area</td> <td>Ag</td> <td>mm²</td> <td>1,810</td> <td>2,124</td> <td>2,463</td> <td>2,827</td> <td>3,217</td> <td>3,632</td> <td>4,072</td> <td>4,536</td> <td>5,027</td> <td>5,675</td> <td>6,362</td> <td>6,362</td> <td>7,088</td> <td>7,854</td> <td>8,659</td> <td>9,503</td> <td>10,387</td> <td>10,387</td> <td>11,310</td> <td>12,272</td> <td>13,273</td> <td></td> <td>Ag</td>	Shart gross area	Ag	mm²	1,810	2,124	2,463	2,827	3,217	3,632	4,072	4,536	5,027	5,675	6,362	6,362	7,088	7,854	8,659	9,503	10,387	10,387	11,310	12,272	13,273		Ag
$ k_{N} = \frac{k_{N}}{k_{N}} = \frac{k_{N}}{23} = \frac{2}{3} + \frac{2}{3} + \frac{1}{3} + $	Shaft yield capacity	E	kips	144	169	197	226	257	290	325	362	401	453	508	508	566	627	691	758	829	829	903	979	1.059		E
Huttimate capacity Fu kips 207 243 282 326 369 416 467 520 576 651 729 729 813 900 993 1.090 1.191 1.191 1.197 1.407 1.527 5.297 <t< td=""><td></td><td>Гу</td><td>kN</td><td>642</td><td>754</td><td>874</td><td>1,004</td><td>1,142</td><td>1,289</td><td>1,445</td><td>1,610</td><td>1,784</td><td>2,014</td><td>2,258</td><td>2,258</td><td>2,516</td><td>2,788</td><td>3,074</td><td>3,374</td><td>3,687</td><td>3,687</td><td>4,015</td><td>4,357</td><td>4,712</td><td></td><td>Гу</td></t<>		Гу	kN	642	754	874	1,004	1,142	1,289	1,445	1,610	1,784	2,014	2,258	2,258	2,516	2,788	3,074	3,374	3,687	3,687	4,015	4,357	4,712		Гу
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Shaft ultimate canacity	F	kips	207	243	282	324	369	416	467	520	576	651	729	729	813	900	993	1.090	1.191	1.191	1.297	1.407	1.522		F
D design resistance Fund kN 610 716 831 952 1,063 1,211 1,369 1,899 2,094 2,145 2,391 2,649 2,920 3,205 3,471 3,503 3,814 4,139 4,476 design strength FL56 kips 86 101 118 134 149 170 192 216 200 267 294 303 3,75 414 452 488 496 500 506 566 575 855 960 1,069 1,187 1,309 1,352 1,507 1,670 1,811 2,170 2,208 2,00 2,008 2,00 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,011 1,150 1,001 1,015 1,001 10,151 10,011 10,511 50,108 50,57 6,36 3,77	Shart utilitate capacity	Fua	kN	923	1,083	1,256	1,442	1,641	1,852	2,076	2,314	2,564	2,894	3,244	3,244	3,615	4,006	4,416	4,847	5,297	5,297	5,768	6,259	6,769		Fua
$ \frac{1}{1} + 1$	LEPD design resistance	E	kips	137	161	187	214	239	272	308	344	381	427	471	482	537	595	656	721	780	788	857	930	1.006		E
Image: design strength Fust kN 385 451 524 595 665 757 855 960 1,069 1,37 1,309 1,329 1,507 1,670 1,841 2,011 2,170 2,208 2,404 2,609 2,629 2,620 2,600 2,605 2,6	LEND design resistance	I⊤t,Rd	kN	610	716	831	952	1,063	1,211	1,369	1,530	1,695	1,899	2,094	2,145	2,391	2,649	2,920	3,205	3,471	3,503	3,814	4,139	4,476		⊏ t,Rd
$ \frac{1}{10 \text{ code}} = \frac{1}{100 \text{ code}} + \frac{1}{10$	ASD design strength	Free	kips	86	101	118	134	149	170	192	216	240	267	294	304	339	375	414	452	488	496	540	586	634		Enn
$\frac{in}{Mmm} \frac{2.2}{5.6} + \frac{2.4}{5.5} + \frac{2.7}{2.7} + \frac{2.8}{2.8} + \frac{3.0}{3.0} + \frac{3.1}{3.3} + \frac{3.3}{3.5} + \frac{3.7}{3.7} + \frac{3.9}{3.7} + \frac{4.1}{3.4} + \frac{4.3}{4.5} + \frac{4.7}{4.9} + \frac{4.9}{5.1} + \frac{5.3}{5.3} + \frac{5.5}{5.7} + \frac{5.9}{5.7} + \frac{5.9}{5.9} + \frac{100}{105} + \frac{100}{105} + \frac{100}{105} + \frac{100}{115} + 1$		I⊂t,Sd	kN	385	451	524	595	665	757	855	960	1,069	1,187	1,309	1,352	1,507	1,670	1,841	2,011	2,170	2,208	2,404	2,609	2,822		⊡t,Rd
mum shaft diameter Ødg mm 56 60 64 68 72 76 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 160 160 160 160 110 115 120 125 130 135 140 145 150 160 160 160 115 120 125 130 135 140 145 150 160 160 160 160 160 161 17.5 19.0 20.6 22.2 23.9 25.6 27.4 27.4 27.4 27.4 27.4 27.6 27.7 27.6<	ASD0 code		ASD0355 -	M64/56	M68/60	M72/64	M76/68	M80/72	M85/75	M90/80	M95/85	M100/90	M105/95	M110/100	M115/105	M120/110	M125/115	M130/120	M135/125	M140/130	M145/135	M150/140	M155/145	M160/150	M165+	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ontimum shaft diameter	Ød	in	2.2	2.4	2.5	2.7	2.8	3.0	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	5.9		Ød
$\frac{A_{g}}{A_{g}} = \frac{A_{g}}{mn^{2}} \frac{2,463}{2,827} \frac{2,827}{3,217} \frac{3,632}{2,827} \frac{4,27}{3,217} \frac{3,632}{4,072} \frac{4,536}{5,027} \frac{5,675}{5,675} \frac{6,362}{5,027} \frac{7,088}{5,67} \frac{7,854}{6,76} \frac{8,659}{7,958} \frac{9,503}{10,387} \frac{11,310}{1,310} \frac{12,272}{13,273} \frac{14,314}{15,394} \frac{15,394}{15,394} \frac{16,513}{15,394} \frac{17,671}{15,394} \frac{16,513}{17,671} + \frac{A_{g}}{10} \frac{11,10}{11,10} \frac{12,272}{13,273} \frac{14,314}{15,394} \frac{15,394}{1,513} \frac{15,394}{1,513} \frac{17,671}{1,510} \frac{17,671}{1,$	optimum shart diameter	Øug	mm	56	60	64	68	72	76	80	85	90	95	100	105	110	115	120	125	130	135	140	145			øug
$ \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{3} 1$	Shaft gross area	٨	in ²	3.8	4.4	5.0	5.6	6.3	7.0	7.8	8.8	9.9	11.0	12.2	13.4	14.7	16.1	17.5	19.0	20.6	22.2	23.9	25.6	27.4		٨
t yield capacity Fy kN 874 1,004 1,142 1,289 1,445 1,610 1,784 2,014 2,258 2,516 2,788 3,074 3,374 3,687 4,015 4,357 4,712 5,081 5,465 5,862 6,273 targer Fy diameters at tultimate capacity Fy Ex. Kips 282 324 369 416 467 520 576 651 729 813 900 993 1,090 1,191 1,297 1,407 1,522 1,641 1,765 1,893 2,026 request Fy	Sharry1055 area	Ag	mm²	2,463	2,827	3,217	3,632	4,072	4,536	5,027	5,675	6,362	7,088	7,854	8,659	9,503	10,387	11,310	12,272	13,273	14,314	15,394	16,513	17,671		Аg
kN 874 1,004 1,142 1,289 1,445 1,610 1,784 2,014 2,258 2,516 2,788 3,074 3,374 3,687 4,015 4,357 4,712 5,081 5,465 5,862 6,273 darger diger distributes at the state of the st	Shaft yield capacity	F	kips	197	226	257	290	325	362	401	453	508	566	627	691	758	829	903	979	1,059	1,142	1,229	1,318	1,410		F
tultimate capacity En kips 282 324 369 416 467 520 576 651 729 813 900 993 1,090 1,191 1,297 1,407 1,522 1,641 1,765 1,893 2,026 request		T y	kN	874	1,004	1,142	1,289	1,445	1,610	1,784	2,014	2,258	2,516	2,788	3,074	3,374	3,687	4,015	4,357	4,712	5,081	5,465	5,862	6,273		Ту
	Shaft ultimate canacity	E.,	kips	282	324	369	416	467	520	576	651	729	813	900	993	1,090	1,191	1,297	1,407	1,522	1,641	1,765	1,893	2,026		E
KN 1,236 1,442 1,641 1,832 2,076 2,314 2,364 2,894 3,244 3,613 4,006 4,416 4,847 3,297 5,768 6,259 6,769 7,300 7,831 8,422 9,012	Shart uttimate capacity	I ua	kN	1,256	1,442	1,641	1,852	2,076	2,314	2,564	2,894	3,244	3,615	4,006	4,416	4,847	5,297	5,768	6,259	6,769	7,300	7,851	8,422	9,012		I ua
D design resistance FLRd kips 187 214 244 275 309 344 381 430 482 537 595 656 721 788 857 930 1,006 1,085 1,167 1,252 1,340	LFRD design resistance	Enne	kips			244	275	309		381		482	537	595		721		857		1,006	1,085	1,167				Find
kN 831 954 1,085 1,225 1,373 1,530 1,695 1,914 2,145 2,391 2,649 2,920 3,205 3,503 3,814 4,139 4,476 4,827 5,192 5,569 5,960		I 1,KO	kN	831	954	1,085	1,225	1,373	1,530	1,695	1,914	2,145	2,391	2,649	2,920	3,205	3,503	3,814	4,139	4,476	4,827	5,192	5,569	5,960		T t,Rd
	ASD design strength	F _{t.Sd}	kips	118	135	154	174	195	217	240	271	304	339	375	414	454	496	540	586	634	684	736	789	844		E
design strength Filsd																										

ASD0500 – Design Information

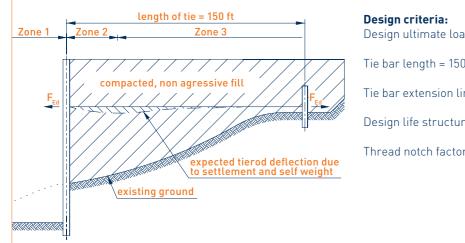
ASDO code		ASD0500 -	M64/48	M68/52	M72/52	M76/56	M80/60	M85/64	M90/68	M95/72	M100/76	M105/80	M110/85	M115/90	M120/90	M125/95	M130/100	M135/105	M140/110	M145/110	M150/115	M155/120	M160/125	M165/130	M170+	
Optimum shaft diameter	Ødq	in	1.9	2.0	2.0	2.2	2.4	2.5	2.7	2.8	3.0	3.1	3.3	3.5	3.5	3.7	3.9	4.1	4.3	4.3	4.5	4.7	4.9	5.1		
optimum shurt diameter	pay	mm	48	52	52	56	60	64	68	72	76	80	85	90	90	95	100	105	110	110	115	120	125	130		
Shaft gross area	Ag	in ²	2.8	3.3	3.3	3.8	4.4	5.0	5.6	6.3	7.0	7.8	8.8	9.9	9.9	11.0	12.2	13.4	14.7	14.7	16.1	17.5	19.0	20.6		
Share gross area	, rg	mm ²	1,810	2,124	2,124	2,463	2,827	3,217	3,632	4,072	4,536	5,027	5,675	6,362	6,362	7,088	7,854	8,659	9,503	9,503	10,387	11,310	12,272	13,273		
Shaft yield capacity	E.	kips	203	239	239	277	318	362	408	458	510	565	638	715	715	797	883	973	1,068	1,068	1,168	1,271	1,379	1,492		
Shart yield capacity	i y	kN	905	1,062	1,062	1,232	1,414	1,608	1,816	2,036	2,268	2,513	2,837	3,181	3,181	3,544	3,927	4,330	4,752	4,752	5,193	5,655	6,136	6,637	larger diameters at	+
Shaft ultimate capacity	Fua	kips	268	315	315	365	420	477	539	604	673	746	842	944	944	1,052	1,165	1,285	1,410	1,410	1,541	1,678	1,821	1,969	request	
Shart uttimate capacity	l ua	kN	1,194	1,402	1,402	1,626	1,866	2,123	2,397	2,687	2,994	3,318	3,745	4,199	4,199	4,678	5,184	5,715	6,272	6,272	6,855	7,464	8,099	8,760		
LFRD design resistance	Free	kips	191	218	227	263	302	344	388	435	484	537	606	669	679	757	839	925	1,010	1,015	1,109	1,208	1,310	1,417		
LI IND design resistance	⊢t,Rd	kN	848	968	1,009	1,170	1,343	1,528	1,725	1,934	2,155	2,388	2,695	2,976	3,022	3,367	3,731	4,113	4,492	4,514	4,934	5,372	5,829	6,305		
ASD design strength	E	kips	119	136	143	166	190	217	244	274	305	338	381	418	428	477	529	583	631	640	699	761	826	888		
	H _{t,Sd}	kN	530	605	636	737	847	963	1,087	1,219	1,358	1,505	1,694	1,860	1,905	2,122	2,351	2,593	2,808	2,845	3,110	3,386	3,674	3,950		
Tie bar code		ASD0500 -	M64/56	M48/40	M72/64	M76/68	M80/72	M85/76	M90/80	M95/85	M100/90	M105/95	M110/100	M115/105	M120/110	M125/115	M130/120	M135/125	M1/0/130	M145/135	M150/1/0	M155/145	M160/150	M165/155	M170+	
			1.10-1/00	1100/00	11/2/04	111/0/00	1100/72	1100/10	1.170/00	1170/00	141100/70	11103/73	11110/100	14113/103	11120/110	11120/110	11100/120	11133/123	14140/100	11140/100	11100/140	14133/143	11100/100	11103/133		
Ontimum shaft diamator	Ød	in	2.2	2.4	2.5	2.7	2.8	3.0	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	5.9	6.1		
Optimum shaft diameter	Ødg	in mm		2.4 60					3.1 80		3.5 90		3.9 100	4.1 105	4.3 110	4.5 115	4.7 120	4.9 125	5.1 130		5.5 140					
	Ødg	in	2.2		2.5	2.7	2.8	3.0	3.1 80 7.8	3.3		3.7							5.1 130 20.6	5.3		5.7	5.9	6.1		
Optimum shaft diameter Shaft gross area	Ød _g Ag	in mm	2.2 56	60	2.5 64	2.7 68	2.8 72	3.0 76		3.3 85	90	3.7 95	100	105	110	115	120	125		5.3 135	140	5.7 145	5.9 150	6.1 155		
Shaft gross area	Ød ₉ A ₉	in mm in ²	2.2 56 3.8	60 4.4	2.5 64 5.0	2.7 68 5.6	2.8 72 6.3	3.0 76 7.0	7.8	3.3 85 8.8	90 9.9	3.7 95 11.0	100 12.2	105 13.4	110 14.7	115 16.1	120 17.5	125 19.0	20.6	5.3 135 22.2	140 23.9	5.7 145 25.6	5.9 150 27.4	6.1 155 29.2		
	Ød ₉ A ₉ F _y	in mm in² mm²	2.2 56 3.8 2,463	60 4.4 2,827	2.5 64 5.0 3,217	2.7 68 5.6 3,632	2.8 72 6.3 4,072	3.0 76 7.0 4,536	7.8 5,027	3.3 85 8.8 5,675	90 9.9 6,362	3.7 95 11.0 7,088	100 12.2 7,854	105 13.4 8,659	110 14.7 9,503	115 16.1 10,387	120 17.5 11,310	125 19.0 12,272	20.6 13,273	5.3 135 22.2 14,314	140 23.9 15,394	5.7 145 25.6 16,513	5.9 150 27.4 17,671	6.1 155 29.2 18,869	larger	
Shaft gross area	A _g F _y	in mm in ² mm ² kips	2.2 56 3.8 2,463 277	60 4.4 2,827 318	2.5 64 5.0 3,217 362	2.7 68 5.6 3,632 408	2.8 72 6.3 4,072 458	3.0 76 7.0 4,536 510	7.8 5,027 565	3.3 85 8.8 5,675 638	90 9.9 6,362 715	3.7 95 11.0 7,088 797	100 12.2 7,854 883	105 13.4 8,659 973	110 14.7 9,503 1,068	115 16.1 10,387 1,168	120 17.5 11,310 1,271	125 19.0 12,272 1,379	20.6 13,273 1,492	5.3 135 22.2 14,314 1,609	140 23.9 15,394 1,730	5.7 145 25.6 16,513 1,856	5.9 150 27.4 17,671 1,986	 6.1 155 29.2 18,869 2,121 		t
Shaft gross area	Ødg Ag Fy Fua	in mm in ² mm ² kips kN	2.2 56 3.8 2,463 277 1,232	60 4.4 2,827 318 1,414	2.5 64 5.0 3,217 362 1,608	2.7 68 5.6 3,632 408 1,816	2.8 72 6.3 4,072 458 2,036	3.0 76 7.0 4,536 510 2,268	7.8 5,027 565 2,513	3.3 85 8.8 5,675 638 2,837	90 9.9 6,362 715 3,181	3.7 95 11.0 7,088 797 3,544	100 12.2 7,854 883 3,927	105 13.4 8,659 973 4,330	110 14.7 9,503 1,068 4,752	115 16.1 10,387 1,168 5,193	120 17.5 11,310 1,271 5,655	125 19.0 12,272 1,379 6,136	20.6 13,273 1,492 6,637	5.3 135 22.2 14,314 1,609 7,157	140 23.9 15,394 1,730 7,697	5.7 145 25.6 16,513 1,856 8,256	5.9 150 27.4 17,671 1,986 8,836	 6.1 155 29.2 18,869 2,121 9,435 	larger diameters at	t
Shaft gross area Shaft yield capacity Shaft ultimate capacity	Ag Fy Fue	in mm in ² kips kN kips	2.2 56 3.8 2,463 277 1,232 365	60 4.4 2,827 318 1,414 420	2.5 64 5.0 3,217 362 1,608 477	2.7 68 5.6 3,632 408 1,816 539	2.8 72 6.3 4,072 458 2,036 604	3.0 76 7.0 4,536 510 2,268 673	7.8 5,027 565 2,513 746	3.3 85 8.8 5,675 638 2,837 842	90 9.9 6,362 715 3,181 944	3.7 95 11.0 7,088 797 3,544 1,052	100 12.2 7,854 883 3,927 1,165	105 13.4 8,659 973 4,330 1,285	110 14.7 9,503 1,068 4,752 1,410	115 16.1 10,387 1,168 5,193 1,541	120 17.5 11,310 1,271 5,655 1,678	125 19.0 12,272 1,379 6,136 1,821	20.6 13,273 1,492 6,637 1,969	5.3 135 22.2 14,314 1,609 7,157 2,124	140 23.9 15,394 1,730 7,697 2,284	5.7 145 25.6 16,513 1,856 8,256 2,450	5.9 150 27.4 17,671 1,986 8,836 2,622	 6.1 155 29.2 18,869 2,121 9,435 2,800 	larger diameters at	t
Shaft gross area	A _g F _y	in mm in² kips kN kips kN	2.2 56 3.8 2,463 277 1,232 365 1,626	60 4.4 2,827 318 1,414 420 1,866	2.5 64 5.0 3,217 362 1,608 477 2,123	2.7 68 5.6 3,632 408 1,816 539 2,397	2.8 72 6.3 4,072 458 2,036 604 2,687	3.0 76 7.0 4,536 510 2,268 673 2,994	7.8 5,027 565 2,513 746 3,318	3.3 85 8.8 5,675 638 2,837 842 3,745	90 9.9 6,362 715 3,181 944 4,199	3.7 95 11.0 7,088 797 3,544 1,052 4,678	100 12.2 7,854 883 3,927 1,165 5,184	105 13.4 8,659 973 4,330 1,285 5,715	110 14.7 9,503 1,068 4,752 1,410 6,272	115 16.1 10,387 1,168 5,193 1,541 6,855	120 17.5 11,310 1,271 5,655 1,678 7,464	125 19.0 12,272 1,379 6,136 1,821 8,099	20.6 13,273 1,492 6,637 1,969 8,760	5.3 135 22.2 14,314 1,609 7,157 2,124 9,447	140 23.9 15,394 1,730 7,697 2,284 10,160	5.7 145 25.6 16,513 1,856 8,256 2,450 10,899	5.9 150 27.4 17,671 1,986 8,836 2,622 11,663	6.1 155 29.2 18,869 2,121 9,435 2,800 12,454	larger diameters at	t
Shaft gross area Shaft yield capacity Shaft ultimate capacity	Ag Fy Fue	in mm in² kips kN kips kN kips	2.2 56 3.8 2,463 277 1,232 365 1,626 263	60 4.4 2,827 318 1,414 420 1,866 302	2.5 64 5.0 3,217 362 1,608 477 2,123 344	2.7 68 5.6 3,632 408 1,816 539 2,397 388	2.8 72 6.3 4,072 458 2,036 604 2,687 435	3.0 76 7.0 4,536 510 2,268 673 2,994 484	7.8 5,027 565 2,513 746 3,318 537	3.3 85 8.8 5,675 638 2,837 842 3,745 606	90 9.9 6,362 715 3,181 944 4,199 679	3.7 95 11.0 7,088 797 3,544 1,052 4,678 757	100 12.2 7,854 883 3,927 1,165 5,184 839	105 13.4 8,659 973 4,330 1,285 5,715 925	110 14.7 9,503 1,068 4,752 1,410 6,272 1,015	115 16.1 10,387 1,168 5,193 1,541 6,855 1,109	120 17.5 11,310 1,271 5,655 1,678 7,464 1,208	125 19.0 12,272 1,379 6,136 1,821 8,099 1,310	20.6 13,273 1,492 6,637 1,969 8,760 1,417	5.3 135 22.2 14,314 1,609 7,157 2,124 9,447 1,528	140 23.9 15,394 1,730 7,697 2,284 10,160 1,644	5.7 145 25.6 16,513 1,856 8,256 2,450 10,899 1,763	5.9 150 27.4 17,671 1,986 8,836 2,622 11,663 1,887	6.1 155 29.2 18,869 2,121 9,435 2,800 12,454 2,015	larger diameters at	t

Note: Above load capacities are based on the calculation methods and typical factors shown on page 6. All assumptions and factors should be checked by the


project engineer before use.

ASD PRODUCT DATA

ASDO TIE BAR DESIGN CAPACITIES



1

Table 3 – Forged eye	tatt gr	radesj																				
Nominal shaft diameter	Ødg	(in) mm	(1.9) 48	(2.0) 52	(2.2) 56	[2.4] 60	(2.5) 64	[2.7] 68	[2.8] 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	(4.7) 120	(4.9) 125	(5.1) 130	Ød _g
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2	
Eye thickness	T _e	in (mm)	1.7 [42]	1.9 [47]	2.0 (50)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 [60]	2.5 [63]	2.6 [66]	2.8 [72]	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	4.1 (105)	4.5 (115)	4.7 (120)	T _e
Eye length	Le	in (mm)	6.4 [162]	7.0 [177]	8.0 (204)	8.1 (207)	8.4 [214]	8.9 [227]	8.9 (227)	9.8 [248]	10.3 [262]	11.4 [289]	12.3 (312)	13.1 (332)	13.4 (340)	14.0 (357)	14.5 (370)	15.0 (382)	16.2 [412]	17.3 [440]	18.1 (460)	L _e
Eye width	W_{e}	in (mm)	4.9 (125)	5.3 (135)	6.1 (155)	6.1 (155)	6.5 (165)	7.1 (180)	7.1 (180)	7.5 (190)	8.3 (210)	9.1 (230)	9.4 (240)	10.0 (255)	10.6 (270)	10.8 (275)	11.4 (290)	11.8 (300)	12.2 (310)	13.0 (330)	13.4 (340)	W _e
Pin diameter (ASD0500)		in (mm)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 [60]	2.5 (64)	2.8 [72]	2.8 (72)	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.5 (115)	4.7 (120)	4.7 (120)	5.1 (130)	

Design example (ASD method)

Design ultimate load for tie bar = 290 kips

Tie bar length = 150 ft (determined by geotechnical analysis)

Tie bar extension limit = 4"

Design life structure = 50 years

Thread notch factor - use recommended value $k_t = 0.6$

Size selection

Minimum Tie bar size required

From table 2 grade ASD0500, $k_t = 0.6$ select M100/76 tie bar

Design Capacity = 305 kips > 290 kips ↔ OK

Thread = M100 (3.9" stress area, $A_s = 10.84 \text{ in}^2$) Shaft = 3" (76 mm) diameter (stress area Aq = 7 in²) = 72 k, f_{ua} = 96 ksi

Note: USACE recommend that the capacity of threads are reduced to allow for the effect of bending in the tie bar, Euro codes further recommend that connections to the wall be articulated to provide sufficient rotation tolerance (further articulation at points of maximum bending along the bar should also be considered – this may require a detailed settlement analysis).

Further checks may be required for combined bending and axial load checks in both the thread and shaft due to settlement of the fill. The use of upset threads and a kt factor of 0.6 will give greater capacity in the areas of likely bending giving a greater safety factor.

For the above example the tie bar arrangement in the figure opposite can be made.

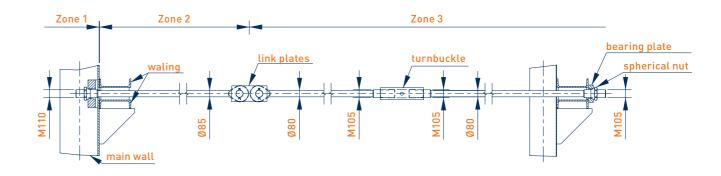
Serviceability check

Elongation under axial working load

Working load = 290 kips
Stress in shaft =
$$\frac{290 \times 10^3}{7}$$
 = 41.4 ksi

Elongation =
$$\frac{41.4 \times 150 \text{ ft}}{29 \times 10^6} = 2.57^{"} < 4^{"} \div \text{OK}$$

Where elastic modulus = 29 mpsi


Hint - if the elongation is too great, try a larger diameter of a lesser grade.

We are happy to assist in selecting the correct thread and shaft combination along with suitable connection details – please contact our sales or technical department at sales@asdo.de. The ASDO tie bar system has been used successfully for many of the world's major port constructions, including:

O London Gateway Port (UK) • Port Autonome Le Havre (France) • Port of Jacksonville (USA) O Pecem Port (Brazil) O Fairview Prince Rupert (Canada) O Port de Trois-Rivières (Canada) O Manila Container Port (Philippines) O Kingston Port (Jamaica) O Liverpool 2 (UK)

• Accaba Container Port (Jordan) • Port Jorf Lasfar (Morocco) • Puerta Caucedo, (Dom. Republic)

Consider corrosion resistance – for robustness and simplicity Each zone is considered in turn and the expected corrosion in handling and installation use sacrificial steel. The tie bar rate added to the minimum size, as per the table below. Note is split into zones as per the diagram below. The corrosion rate the corrosion rate assumed for zone one can be reduced assumed for each zone depends on local conditions, or the considerably by placing the tie bar connection head behind quidance given in EN1993-5 can be considered. The rates the sheet pile pan as shown on page 12 and detail Z page 20. given below are for example only.

Zone	Description	Environment	Corrosion allowance	Min. size corrosion		Nearest st	andard size
				Thread	shaft	Thread	shaft
1	Tie bar connection	Splash zone, aggressive	0.148" (3.75 mm) (from table 4.2 EN1993-5)	4.23" (107.5 mm)	3.28" (83.5 mm)	M110 (4.3")	3.3" (85 mm)
2	Immediately behind wall	Non-aggressive compacted fill, possibility of seawater entering through connection to front wall	0.08" (2 mm) (assumed)	-	3.14" (80 mm)	-	3.3" (85 mm same bar as zone 1)
3	Remainder of tie bar	Non-aggressive compacted fill	0.047" (1.2 mm from table 4.1 EN1993-5, compaction reduction ignored for conservatism)	4.03" (102.4 mm)	3.09" (78.4 mm)	M105 (4.1")	3.15" (80 mm)

Final specification

As a minimum the following information is required in order to specify the tie bars correctly.

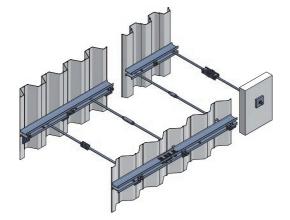
Tie bars:

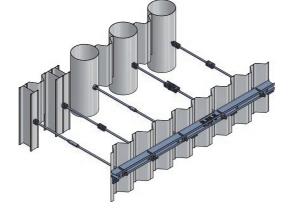
Grade ASD0500 - M110/85, M105/80 with articulated connections, turnbuckles and length as indicated on drawing Minimum ASD design capacity = 290 kips (after corrosion losses) k, = 0.6 Yield strength = 72 ksi (500 N/mm²)

Tensile strength = 96 ksi (660 N/mm²)

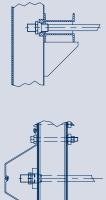
Corrosion protection = sacrificial steel to all bars and components as indicated

ASD PRODUCT ΠΔΤΔ


TYPICAL CONNECTIONS

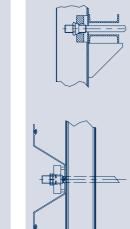

Connections to sheet piles

Forces are transferred from the sheet pile to the tie bar through waling sections that run the length of the wall. At the front wall these are normally placed behind the wall (i.e. earth side) and at the tie bar wall the non-bearing side.

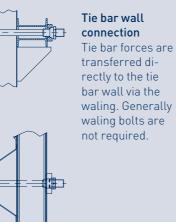

Connections to high modulus piles

Tie bar forces are generally high and articulated connections and recommended to minimize bending at the connection. Articulation can be provided that allows movement in the vertical direction or in all directions.

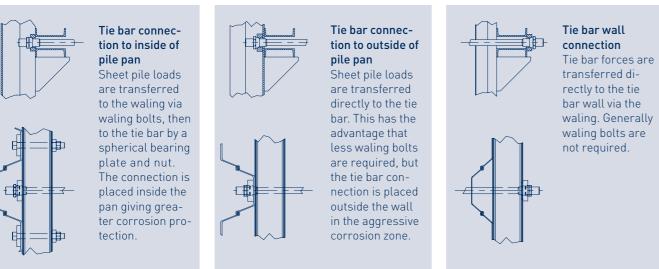
Steel Z-pile with spherical nut (articulated)



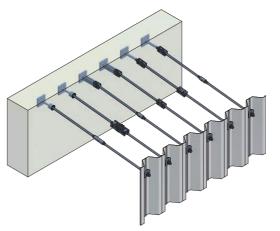
pile pan
 Sheet pile loads
 are transferred
 to the waling via
 waling bolts,
 then to the tie
 bar by a spheri cal bearing plate
 and nut. The
 connection is
 placed inside the
 pan giving grea ter corrosion


protection.

Tie bar connec-


tion to inside of

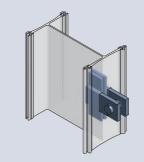
Tie bar connection to outside of pile pan Sheet pile loads are transferred directly to the tie bar. This has the advantage that less waling bolts are required, but the tie bar connection is placed outside the wall in the aggressive corrosion zone.



Steel U-pile with spherical nut (articulated)

Connections to concrete walls

Alignment between the front wall and tie bar wall connection points is critical. Simple articulated connections allow easy casting into the wall without difficult interruption to formwork and allow easy connection once the wall has cured. Articulated joints are strongly recommended to aid installation.

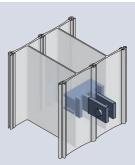

Combi & diaphragm wall connections (articulated)

Combi wall – cast-in forged eye A forged eye bar is cast into the tube transferring forces to the centre of the tube. The anchor bars are attached to the cast-in bar via link plates allowing articulation in the vertical direction.

Combi wall cast-in T-Plate A fabricated T-Plate is cast into the tube transferring forces to the centre of the tube. Forged eye anchor bars are attached to the T-connector via a pin allowing articulation in the vertical direction. See table 7 for more detail.

HZ-M-pile connections (articulated)

HZ-M wall tension plates


Machined and factory welded tension plates are placed either side of the HZ-M web and passed through burnt holes in the flange. Forces are transferred from the transition radius of the HZ-M to the forged eye anchor bar through a pin connection and articulation in the vertical plane is possible. See table 6 for more detail.

ASD PRODUCT DATA

Combi & D-wall cast-in spherical box A machined 'spherical box is cast into the tube transferring forces to the centre of the tube. Forged spherical anchor bars are connected to the box allowing articulation in both the vertical & horizontal directions.

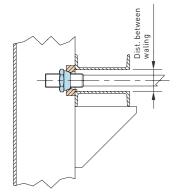
Double HZ-M wall tension beam

A factory welded tension beam is placed bearing on HZ-M flanges close to the web and tension plates passed through burnt holes in the flange. Forces are transferred to the anchor bar through a pin connection and articulation in the vertical plane is possible.

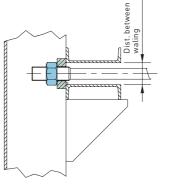
CONNECTIONS

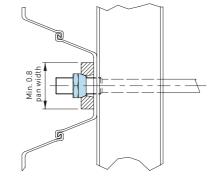
Table 4 – Standard bearing plates (ASD0500, $k_{t} = 0.6$)

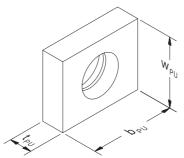
Table 4 - Standard bearing	g plates (ASD0500, $k_t = 1$	0.0)																							
Nominal thread diameter			(in) mm	(2.5) 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	[3.9] 100	(4.1) 105	[4.3] 110	(4.5) 115	(4.7) 120	[4.9] 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	
	Width	W _{PW}	in (mm)	6.3 [160]	6.3 (160)	7.1 (180)	7.1 (180)	7.1 (180)	7.9 (200)	7.9 (200)	7.9 (200)	7.9 (200)	8.7 (220)	8.7 (220)	9.1 (230)	9.4 (240)	9.8 (250)	10.2 (260)	10.6 (270)	11.0 (280)	11.4 (290)	11.4 (290)	12.2 (310)	12.2 (310)	W _{PW}
Spherical plate against waling	Breadth	b _{PW}	in (mm)	7.9 (200)	8.3 (210)	9.1 (230)	9.1 (230)	9.4 (240)	9.8 (250)	10.2 (260)	10.6 (270)	10.6 (270)	11.0 (280)	11.8 (300)	11.8 (300)	11.8 (300)	13.0 (330)	13.0 (330)	13.4 (340)	13.8 (350)	14.6 (370)	14.6 (370)	15.4 (390)	15.4 (390)	b _{PW}
opinerieur plate against wating	Thickness	t _{PW}	in (mm)	1.2 (30)	1.2 (30)	1.4 (35)	1.6 [40]	1.6 (40)	2.0 (50)	2.2 (55)	2.2 (55)	2.6 [65]	2.8 (70)	2.8 (70)	3.1 (80)	3.1 (80)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.7 (120)	4.7 (120)	5.1 (130)	t _{PW}
	Max. dist. between waling ²	W_{dist}	in (mm)	3.9 (100)	3.9 (100)	4.7 (120)	4.7 (120)	4.7 (120)	5.5 (140)	5.5 (140)	5.5 (140)	5.5 (140)	6.3 (160)	6.3 (160)	6.3 (160)	6.3 (160)	7.1 (180)	7.1 (180)	7.1 (180)	7.1 (180)	7.9 (200)	7.9 (200)	7.9 (200)	7.9 (200)	W _{dist}
Nominal thread diameter			(in) mm	(2.5) 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	(4.7) 120	[4.9] 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	
	Width	W _{PU}	in (mm)	6.3 [160]	6.3 (160)	7.1 (180)	7.1 (180)	7.1 (180)	7.9 (200)	7.9 (200)	7.9 (200)	7.9 (200)	8.7 (220)	8.7 (220)	8.7 (220)	8.7 (220)	9.4 (240)	9.4 (240)	9.4 (240)	9.4 (240)	10.2 (260)	10.2 (260)	10.2 [260]	10.2 (260)	W _{PU}
Standard plate against waling	Breadth	b _{PU}	in (mm)	6.7 (170)	7.1 (180)	7.9 (200)	7.9 (200)	7.9 (200)	8.3 (210)	8.3 (210)	8.7 (220)	8.7 (220)	9.1 (230)	9.4 (240)	9.4 (240)	9.4 (240)	10.2 (260)	10.6 (270)	10.6 (270)	11.0 (280)	11.4 (290)	11.8 (300)	12.2 (310)	12.2 (310)	b _{PU}
Standard plate against watnig	Thickness	t _{PU}	in (mm)	1.2 (30)	1.2 (30)	1.4 (35)	1.6 [40]	1.6 (40)	2.0 (50)	2.2 (55)	2.2 (55)	2.6 [65]	2.8 (70)	2.8 (70)	3.1 (80)	3.1 (80)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.7 (120)	4.7 (120)	5.1 (130)	t _{PU}
	Max. dist. between waling ²	W_{dist}	in (mm)	3.9 (100)	3.9 (100)	4.7 (120)	4.7 (120)	4.7 (120)	5.5 (140)	5.5 (140)	5.5 (140)	5.5 (140)	6.3 (160)	6.3 (160)	6.3 (160)	6.3 (160)	7.1 (180)	7.1 (180)	7.1 (180)	7.1 (180)	7.9 (200)	7.9 (200)	7.9 (200)	7.9 (200)	W _{dist}
Nominal thread diameter			(in) mm	(2.5) 64	[2.7] 68	[2.8] 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	[4.3] 110	(4.5) 115	(4.7) 120	[4.9] 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	
	Width	W _{PC}	in (mm)	8.7 [220]	9.4 (240)	9.8 (250)	10.2 (260)	11.4 (290)	11.8 (300)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	15.4 (390)	16.1 (410)	16.5 [420]	17.7 (450)	18.1 [460]	19.3 [490]	19.7 (500)	20.5 (520)	21.3 (540)	21.7 (550)	22.8 (580)	W _{PC}
Spherical plate against concrete	Breadth	b _{PC}	in (mm)	8.7 (220)	9.4 (240)	9.8 (250)	10.2 (260)	11.4 (290)	11.8 (300)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	15.4 (390)	16.1 (410)	16.5 (420)	17.7 (450)	18.1 (460)	19.3 (490)	19.7 (500)	20.5 (520)	21.3 (540)	21.7 (550)	22.8 (580)	b _{PC}
	Thickness	t _{PC}	in (mm)	1.2 (30)	1.4 (35)	1.4 (35)	1.4 [35]	1.4 (35)	1.6 [40]	1.6 (40)	1.8 (45)	2.0 (50)	2.0 (50)	2.2 (55)	2.2 (55)	2.4 (60)	2.4 (60)	2.6 [65]	2.6 (65)	2.8 (70)	2.8 (70)	3.0 (75)	3.1 (80)	3.1 (80)	t _{PC}
Nominal thread diameter			(in) mm	(2.5) 64	[2.7] 68	[2.8] 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	[3.9] 100	(4.1) 105	[4.3] 110	(4.5) 115	(4.7) 120	[4.9] 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	
	Width	W _{PC}	in (mm)	8.7 (220)	9.4 (240)	9.8 (250)	10.2 (260)	11.4 (290)	11.8 (300)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	15.4 (390)	16.1 (410)	16.5 [420]	17.7 (450)	18.1 (460)	19.3 [490]	19.7 (500)	20.5 (520)	21.3 (540)	21.7 (550)	22.8 (580)	W _{PC}
Spherical plate against concrete	Breadth	b _{PC}	in (mm)	8.7 (220)	9.4 (240)	9.8 (250)	10.2 (260)	11.4 (290)	11.8 (300)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	15.4 (390)	16.1 (410)	16.5 (420)	17.7 (450)	18.1 (460)	19.3 [490]	19.7 (500)	20.5 (520)	21.3 (540)	21.7 (550)	22.8 (580)	b _{PC}
	Thickness	t _{PC}	in (mm)	1.2 (30)	1.4 (35)	1.4 (35)	1.4 [35]	1.4 (35)	1.6 [40]	1.6 (40)	1.8 (45)	2.0 (50)	2.0 (50)	2.2 (55)	2.2 (55)	2.4 [60]	2.4 (60)	2.6 [65]	2.6 (65)	2.8 (70)	2.8 (70)	3.0 (75)	3.1 (80)	3.1 (80)	t _{PC}
Notes: 1 All plates grade 50 ksi an	d based on the maximum threa	d canacity	v for ASD050	$10 k = 0.6 F_{0}$	or other grad	des or where	k = 0.9 diff	erent nlates	are require	d *		2 A waling	gan greater	than this dis	tance will r	educe the ca	anacity of the	nlate *							

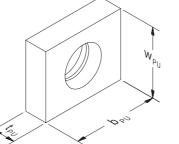

Notes: 1. All plates grade 50 ksi and based on the maximum thread capacity for ASD0500, k₁ = 0.6. For other grades or where k₁ = 0.9 different plates are required. 3. Concrete grade assumed at C35/45, plate dimensions will change for different grades of concrete.*

A waling gap greater than this distance will reduce the capacity of the plate. *Please contact our technical department for further information.

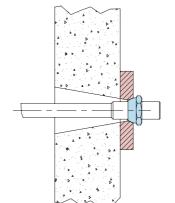

Table 5 – Hexagon and spherical nuts (ASD0500, k_t = 0.6)

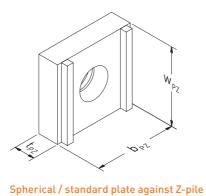

Nominal thread diameter		(in) mm	(2.5) 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	[4.7] 120	[4.9] 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	
Hexagon Flat Nuts	Across corners	in (mm)	4.2 [106]	4.4 (111)	4.6 [117]	4.8 [123]	5.0 [128]	5.3 [134]	5.7 (145)	5.9 (151)	6.4 [162]	6.8 [173]	7.0 [179]	7.5 (191)	7.7 (196)	8.2 (208)	8.4 (214)	8.6 [219]	9.1 (231)	9.5 [242]	9.5 (242)	10.0 (254)	10.5 [266]	W _{PU}
Thexagon T tat Muts	Across flats	in (mm)	3.7 (95)	3.9 (100)	4.1 (105)	4.3 (110)	4.5 (115)	4.7 (120)	5.1 (130)	5.3 (135)	5.7 (145)	5.9 (150)	6.1 (155)	6.5 (165)	6.7 (170)	7.1 (180)	7.3 (185)	7.5 (190)	7.9 (200)	8.3 (210)	8.3 (210)	8.7 (220)	9.1 (230)	b _{PU}
Spherical Nuts	Across corners	in (mm)	4.2 (106)	4.4 (111)	4.6 [117]	4.8 [123]	5.0 (128)	5.3 [134]	5.7 (145)	5.9 (151)	6.4 [162]	7.7 (196)	8.2 (208)	8.6 (219)	8.9 (225)	9.3 (237)	9.5 (242)	10.0 (254)	10.5 (266)	10.7 (271)	11.1 (283)	11.6 (294)	11.8 (300)	t _{PU}
Spherical Nuts	Across flats	in (mm)	3.7 (95)	3.9 (100)	4.1 (105)	4.3 (110)	4.5 (115)	4.7 [120]	5.1 (130)	5.3 (135)	5.7 (145)	6.7 (170)	7.1 (180)	7.5 (190)	7.7 (195)	8.1 (205)	8.3 (210)	8.7 (220)	9.1 (230)	9.3 (235)	9.6 (245)	10.0 (255)	10.2 (260)	W _{dist}
	Depth	in (mm)	2.0 (51)	2.1 (54)	2.3 [58]	2.4 (61)	2.5 (64)	2.7 (68)	2.8 (72)	3.0 (76)	3.1 (80)	4.3 (110)	4.3 (110)	4.7 (120)	4.7 (120)	5.1 (130)	5.1 (130)	5.5 (140)	5.5 (140)	5.9 (150)	5.9 (150)	6.3 (160)	6.3 (160)	


Standard bearing plates

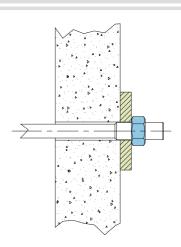


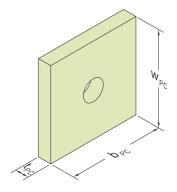
Spherical plate against waling





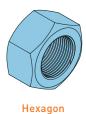
Spherical / standard plate against U-pile (contact Anker Schroeder for dimensions)




(contact Anker Schroeder for dimensions)

Spherical plate against concrete

Standard plate against waling


ASD PRODUCT DATA

Standard plate against concrete

Hexagon and spherical nuts

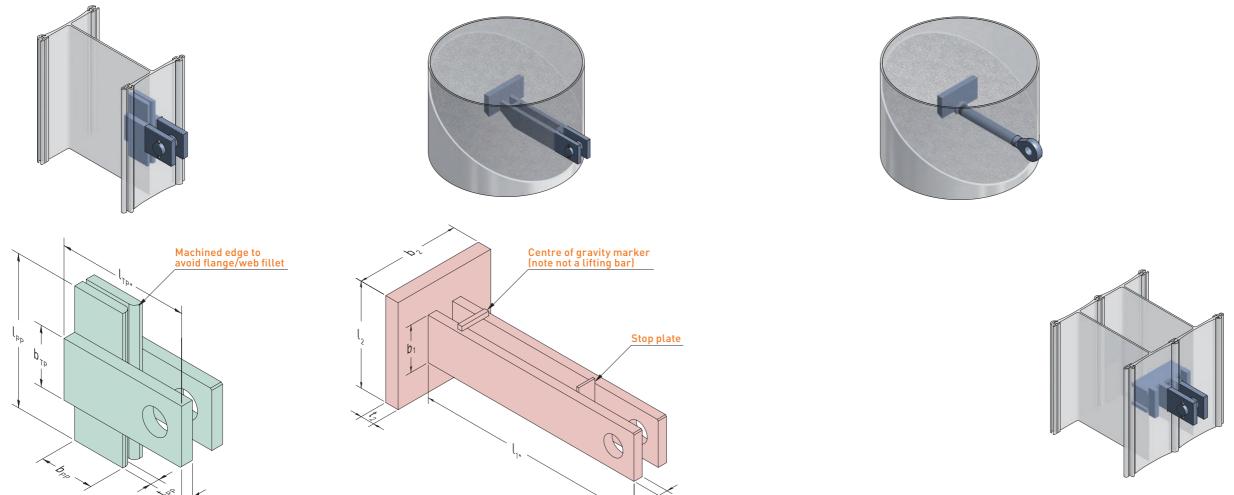
Spherical

CONNECTIONS

Table 6 – T-Plates for HZ-M-piles (ASD0500, k_t = 0.6)

Nominal Shaft diameter		(in) mm	(1.9) 48	(2.0) 52	(2.2) 56	(2.4) 60	(2.5) 64	(2.7) 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	(4.7) 120	(4.9) 125	(5.1) 130	
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2	
Tension plates breadth	b _{TP}	in (mm)	5.1 (130)	5.7 (145)	6.3 (160)	6.7 (170)	6.7 [170]	7.5 (190)	7.5 (190)	7.7 (195)	8.9 (225)	9.6 (245)	10.6 (270)	11.2 (285)	11.4 (290)	11.8 (300)	12.6 (320)	13.0 (330)	13.6 (345)	14.4 (365)	14.6 (370)	b _{TP}
Tension plates thickness	t _{TP}	in (mm)	1.2 (30)	1.2 (30)	1.2 (30)	1.2 (30)	1.4 [35]	1.6 [40]	1.8 [45]	2.0 (50)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 (60)	2.4 [60]	2.6 (65)	t _{TP}					
Bearing plates breadth	b _{PP}	in (mm)	4.3 (110)	4.5 (115)	5.1 (130)	5.5 (140)	5.5 (140)	6.1 (155)	6.7 [170]	7.5 (190)	7.5 (190)	8.1 (205)	9.4 (240)	9.8 (250)	10.4 (265)	10.4 (265)	11.4 (290)	12.2 (310)	13.0 (330)	13.8 (350)	14.6 (370)	b _{PP}
Bearing plates thickness	l _{PP} *	in (mm)	0.6 (15)	0.8 (20)	1.0 [25]	1.0 (25)	1.0 [25]	1.0 (25)	1.0 (25)	1.2 (30)	1.2 (30)	1.2 (30)	1.4 (35)	1.4 (35)	1.4 (35)	1.4 (35)	1.6 [40]	1.6 [40]	1.6 (40)	1.6 [40]	1.6 (40)	l _{PP} *
Bearing plates length		in (mm)	15.7 (400)	15.7 (400)	15.7 (400)	17.3 [440]	18.5 [470]	20.9 (530)	22.4 (570)	21.7 (550)	24.0 (610)	26.4 (670)	27.6 (700)	29.9 (760)	31.9 (810)	33.9 (860)	34.6 (880)	37.0 (940)	39.0 (990)	41.7 (1,060)	43.7 (1,110)	
Pin diameter		in (mm)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 [60]	2.5 [64]	2.8 [72]	2.8 [72]	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.5 (115)	4.7 (120)	4.9 (125)	5.1 (130)	
$*l_{\mbox{\tiny PP}}$ based on a HZM profile	quality S2	40GP with f _y	, 219 N/mm ²																			

Table 7 – T-Tie bars for combi-walls (ASD0500, $k_1 = 0.6$)


	combi-	watts (AS	D0300, Rt -	0.0)																		
Nominal Shaft diameter		(in) mm	(1.9) 48	(2.0) 52	(2.2) 56	[2.4] 60	(2.5) 64	(2.7) 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	[4.7] 120	(4.9) 125	(5.1) 130	
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2	
Tension Plate Width	b ₁	in (mm)	5.1 (130)	5.7 (145)	6.3 (160)	6.7 (170)	6.7 (170)	7.5 (190)	7.5 (190)	7.7 (195)	8.9 (225)	9.6 (245)	10.6 (270)	11.2 (285)	11.4 (290)	11.8 (300)	12.6 (320)	13.0 (330)	13.6 (345)	14.4 (365)	14.6 (370)	b ₁
Tension Plate thickness	t ₁	in (mm)	1.2 (30)	1.2 (30)	1.2 (30)	1.2 (30)	1.4 (35)	1.6 [40]	1.8 [45]	2.0 (50)	2.0 (50)	2.2 (55)	2.4 (60)	2.4 (60)	2.4 (60)	2.6 (65)	t ₁					
Bearing plate height & width*	$l_2 \ge b_2$	in (mm)	9.1 (230)	9.8 (250)	10.6 (270)	11.4 (290)	12.2 (310)	13.0 (330)	13.4 (340)	14.2 (360)	15.0 (380)	15.7 (400)	16.9 [430]	18.1 [460]	18.9 [480]	19.3 [490]	20.9 (530)	21.7 (550)	22.4 (570)	23.2 (590)	24.0 (610)	$l_2 \ge b_2$
bearing plate thickness	t ₂	in (mm)	1.4 (35)	1.6 [40]	1.8 [45]	1.8 [45]	2.0 (50)	2.0 (50)	2.2 (55)	2.2 (55)	2.4 [60]	2.6 [65]	2.8 (70)	2.8 (70)	3.0 (75)	3.0 (75)	3.1 (80)	3.5 (90)	3.5 (90)	3.7 (95)	3.7 (95)	t ₂
Pin diameter		in (mm)	2.0 (50)	2.2 (55)	2.4 (60)	2.4 [60]	2.5 [64]	2.8 [72]	2.8 [72]	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.5 (115)	4.7 (120)	4.7 (120)	5.1 (130)	

Note concrete grade assumed at C35/45, plate dimensions will change for different grades – please contact our technical department for information. All plates grade 50 ksi and based on maximum thread capacity for ASD0500, kt = 0.6. For other grades and kt = 0.9 contact our technical team.

T-Plates for HZ-piles

T-Tie bars for combi-walls

Other connectors

 ${}^{*}l_{_{TP}}$ depending on H-pile and nominal size

*l, depending on tube diameter and nominal size

ASD PRODUCT DATA

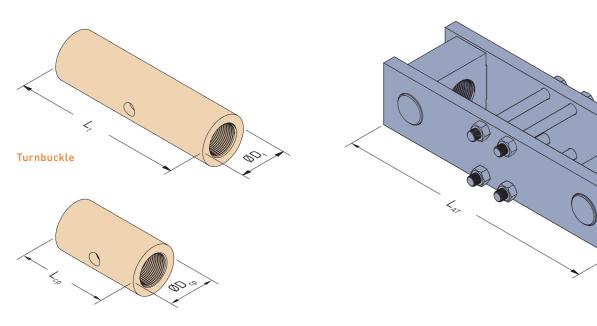
CONNECTIONS

Table 8 – Turnbuckle & coupler (ASD0500, k_t = 0.6)

	-																								
Nominal thread diameter		(in) mm	(2.5) 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	[4.7] 120	(4.9) 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	(6.5) 165	
Diameter	ØD _t & ØD _{cp}	in (mm)	3.7 (95)	4.0 (102)	4.0 (102)	4.3 (108)	4.5 (114)	4.8 (121)	5.0 [127]	5.2 (133)	5.7 (146)	6.0 (152)	6.3 (159)	6.5 (165)	6.7 (171)	7.0 (178)	7.5 (191)	7.5 (191)	8.0 (203)	8.0 (203)	8.5 (216)	8.5 (216)	9.0 (229)	9.5 (241)	ØD, & ØD _{cp}
Standard turnbuckle length	L	in (mm)	11.0 (280)	11.4 (290)	11.6 (295)	12.0 (305)	12.2 (310)	12.6 (320)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	14.6 (370)	15.0 (380)	15.7 (400)	16.1 (410)	16.5 (420)	16.9 (430)	17.3 (440)	17.7 (450)	18.1 (460)	18.7 (475)	19.1 (485)	19.5 (495)	L
Standard turnbuckle adjustment	+/-	in (mm)	2.0 (50)	+/-																					
Long turnbuckle length	L	in (mm)	18.9 (480)	19.3 (490)	19.5 (495)	19.9 (505)	20.1 (510)	20.5 (520)	20.9 (530)	21.3 (540)	21.7 (550)	22.0 (560)	22.4 (570)	22.8 (580)	23.6 (600)	24.0 (610)	24.4 (620)	24.8 (630)	25.2 (640)	25.6 (650)	26.0 (660)	26.6 (675)	27.0 (685)	27.4 (695)	L
Long turnbuckle adjustment	+/-	in (mm)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	5.9 (150)	+/-
Coupler length	L _{cp}	in (mm)	5.1 (130)	5.5 (140)	5.7 (145)	6.1 (155)	8.9 (225)	9.3 (235)	9.6 (245)	10.0 (255)	10.8 (275)	11.2 (285)	11.6 (295)	12.0 (305)	12.6 (320)	13.0 (330)	13.4 (340)	13.8 (350)	14.2 (360)	14.6 (370)	15.0 (380)	15.6 (395)	15.9 (405)	16.3 (415)	L _{cp}
Turnbuckles with longer adjus	tment are pos	sible - plea	se contact o	ur sales dep	artment for	more inform	nation.																		

Table 9 – Articulated turnbuckle (ASD0500, k_t = 0.6)

rabte / /introductou tarr	bachte	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,																						
Nominal thread diameter		(in) mm	(2.5) 64	(2.7) 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	[4.7] 120	(4.9) 125	(5.1) 130	(5.3) 135	(5.5) 140	(5.7) 145	(5.9) 150	(6.1) 155	(6.3) 160	(6.5) 165	
Length	L _{AT}	in (mm)	19.7 (500)	20.1 (510)	21.3 (540)	25.6 (650)	26.4 [670]	26.8 [680]	27.2 [690]	28.3 (720)	29.9 [760]	31.1 (790)	31.9 (810)	33.5 (850)	34.3 [870]	35.8 (910)	35.4 (900)	37.0 (940)	37.0 (940)	38.2 [970]	38.2 (970)	39.8 (1,010)	40.6 (1,030)	41.3 (1,050)	L _{AT}
Adjustment	+/-	in (mm)	3.9 (100)	3.9 (100)	3.9 (100)	+/-																			
Width	W _{AT}	in (mm)	6.9 [175]	7.1 [180]	7.3 [185]	7.5 (190)	7.7 (195)	8.5 (215)	9.3 (235)	9.4 (240)	10.0 [255]	10.2 (260)	10.4 (265)	10.8 (275)	11.0 [280]	12.0 (305)	12.6 (320)	12.8 (325)	13.8 (350)	14.2 (360)	14.6 (370)	15.0 (380)	15.0 (380)	16.3 [415]	W _{AT}
Height	H _{AT}	in (mm)	5.5 (140)	6.1 (155)	6.5 (165)	6.9 (175)	7.5 (190)	7.7 (195)	7.9 (200)	8.5 (215)	9.4 (240)	10.2 (260)	10.6 (270)	11.6 (295)	12.0 (305)	12.8 (325)	12.6 (320)	13.6 (345)	13.4 (340)	14.4 (365)	14.4 (365)	15.4 (390)	15.7 (400)	16.1 (410)	H _{AT}

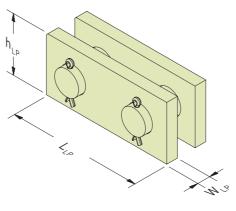

Table 10 – Link plates (ASD0500, $k_t = 0.6$)

Ødg	(in) mm	(1.9) 48	(2.0) 52	[2.2] 56	[2.4] 60	[2.5] 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	[3.7] 95	(3.9) 100	(4.1) 105	(4.3) 110	(4.5) 115	(4.7) 120	(4.9) 125	(5.1) 130	
	inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2	
WLP	in (mm)	1.2 (30)	1.2 (30)	1.2 (30)	1.2 (30)	1.4 (35)	1.6 [40]	1.6 [40]	1.6 [40]	1.6 [40]	1.6 [40]	1.6 (40)	1.8 [45]	2.0 (50)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 (60)	2.4 (60)	2.6 (65)	W _{LP}
L _{LP}	in (mm)	11.8 (300)	13.2 (335)	15.4 (390)	15.4 (390)	15.9 (405)	17.3 [440]	17.3 [440]	18.7 [475]	20.1 (510)	22.4 (570)	24.6 (625)	26.0 (660)	26.6 [675]	27.8 (705)	28.7 (730)	29.5 (750)	31.3 (795)	33.1 (840)	33.9 (860)	L _{LP}
h _{LP}	in (mm)	5.1 (130)	5.7 (145)	6.3 (160)	6.7 (170)	6.7 (170)	7.5 (190)	7.5 (190)	7.7 (195)	8.9 (225)	9.6 [245]	10.6 (270)	11.2 (285)	11.4 (290)	11.8 (300)	12.6 (320)	13.0 (330)	13.6 (345)	14.4 (365)	14.6 (370)	h _{LP}
	in (mm)	2.0 (50)	2.2 (55)	2.4 (60)	2.4 [60]	2.5 [64]	2.8 [72]	2.8 (72)	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.5 (115)	4.7 (120)	4.7 (120)	5.1 (130)	
	W _{LP} L _{LP}	inches W _{LP} in (mm) L _{LP} in (mm) h _{LP} in (mm)	inches 2 1/2 W _{LP} in (mm) 1.2 (30) L _{LP} in (mm) 11.8 (300) h _{LP} in (mm) 5.1 (130)	inches 2 1/2 2 3/4 W _{LP} in (mm) 1.2 (30) 1.2 (30) L _{LP} in (mm) 11.8 (300) 13.2 (335) h _{LP} in (mm) 5.1 (130) 5.7 (145)	inches 2 1/2 2 3/4 3 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160)	inches 2 1/2 2 3/4 3 3 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.4 (390) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170)	inches 2 1/2 2 3/4 3 3 1/4 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170)	inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 6.7 (170)	inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 3 1/2 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) 17.3 (440) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 6.7 (170) 7.5 (190)	inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 3 1/2 3 3/4 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) 17.3 (440) 18.7 (475) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 7.5 (190) 7.5 (190) 7.7 (195)	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) L _{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) 18.7 (475) 20.1 (510) h _{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 7.5 (190) 7.7 (195) 8.9 (225)	inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) <t< th=""><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40)</th><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) <</th><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6</th><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.8 (45) 2.0 (50) 2.0 (50) 2.2 (55) L_{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) 18.7 (475) 20.1 (510) 22.4 (570) 24.6 (625) 26.0 (660) 26.6 (675) 27.8 (705) 28.7 (730) h_{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 7.5 (190) 7.7 (195) 8.9 (225) 9.6 (245) 10.6 (270) 11.2 (285) 11.8 (300) 12.6 (320)</th><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40)<</th><th>inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (</th><th>inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.8 (45) 2.0 (50) 2.0 (50) 2.2 (55) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60)<th></th></th></t<>	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40)	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) <	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 W _{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.8 (45) 2.0 (50) 2.0 (50) 2.2 (55) L_{LP} in (mm) 11.8 (300) 13.2 (335) 15.4 (390) 15.9 (405) 17.3 (440) 18.7 (475) 20.1 (510) 22.4 (570) 24.6 (625) 26.0 (660) 26.6 (675) 27.8 (705) 28.7 (730) h_{LP} in (mm) 5.1 (130) 5.7 (145) 6.3 (160) 6.7 (170) 7.5 (190) 7.7 (195) 8.9 (225) 9.6 (245) 10.6 (270) 11.2 (285) 11.8 (300) 12.6 (320)	inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40)<	inches 2 1/2 2 3/4 3 3 3 1/4 3 1/2 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (inches 2 1/2 2 3/4 3 3 1/4 3 1/2 3 1/2 3 3/4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 W_{LP} in (mm) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.2 (30) 1.4 (35) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.6 (40) 1.8 (45) 2.0 (50) 2.0 (50) 2.2 (55) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) 2.4 (60) <th></th>	

Table 11 – Cardan joint (ASD0500, k_t = 0.6)

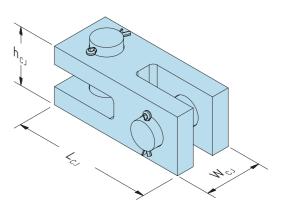
Nominal shaft diameter	Ødg	(in) mm	(1.9) 48	(2.0) 52	(2.2) 56	[2.4] 60	[2.5] 64	[2.7] 68	(2.8) 72	(3.0) 76	(3.1) 80	(3.3) 85	(3.5) 90	(3.7) 95	(3.9) 100	(4.1) 105	[4.3] 110	(4.5) 115	(4.7) 120	(4.9) 125	(5.1) 130	
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4	6	6 1/4	6 1/2	
Length	L _{CJ}	in (mm)	13.0 (330)	14.2 (360)	16.1 [410]	16.1 [410]	17.3 [440]	18.9 [480]	18.9 [480]	19.7 (500)	21.3 (540)	22.4 (570)	24.0 [610]	26.0 [660]	26.8 [680]	27.6 (700)	29.5 (750)	30.7 (780)	31.9 (810)	34.3 (870)	35.8 (910)	L _{CJ}
Width	W _{CJ}	in (mm)	4.7 (120)	5.1 (130)	5.5 (140)	5.5 (140)	5.9 (150)	6.7 (170)	6.7 (170)	7.1 (180)	7.5 (190)	7.9 (200)	8.3 (210)	8.7 (220)	9.4 (240)	9.8 (250)	10.2 (260)	10.6 (270)	11.0 (280)	11.4 (290)	11.8 (300)	W _{CJ}
Height	h _{cJ}	in (mm)	4.7 (120)	5.1 (130)	5.5 (140)	5.5 (140)	5.9 (150)	6.7 [170]	6.7 (170)	7.1 (180)	7.5 (190)	7.9 (200)	8.3 (210)	8.7 (220)	9.4 (240)	9.8 (250)	10.2 (260)	10.6 (270)	11.0 (280)	11.4 (290)	11.8 (300)	h _c ,
Pin diameter		in (mm)	2.0 (50)	2.2 (55)	2.4 [60]	2.4 [60]	2.5 [64]	2.8 [72]	2.8 (72)	3.0 (75)	3.1 (80)	3.3 (85)	3.5 (90)	3.7 (95)	3.9 (100)	3.9 (100)	4.3 (110)	4.5 (115)	4.7 (120)	4.7 (120)	5.1 (130)	

All plates grade 50 ksi and based on maximum thread capacity for ASD0500, kt = 0.6. For other grades and kt = 0.9 contact our technical team.



Coupler

Couplers and turnbuckles are used to connect bars to make longer lengths. A turnbuckle can be used for length adjustment.

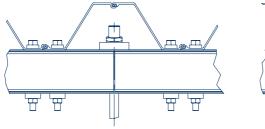

Articulated turnbuckle An adjustable turnbuckle allows length adjustment and articulation in one plane.

4

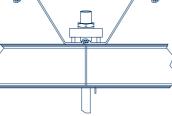
Link plates Together with forged eyes link plates provide the most economic articulated joint and the simplest connection to achieve in site conditions.

ASD PRODUCT DATA

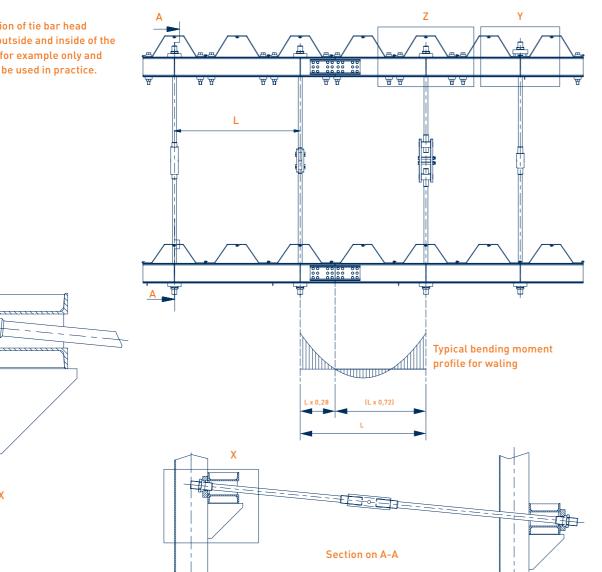
Cardan joint The cardan joint allows bars with forged eyes to articulate in both vertical and horizontal planes.



WALINGS


Anker Schroeder can supply complete waling systems to suit a variety of wall configurations. Waling usually comprises of two rolled steel channel sections placed back to back and spaced to allow the tie rods to pass between the channels. This spacing must allow for the diameter of the tie rod and the thickness of any protective material applied to the rod and take into account any additional space required if the tie rods are inclined and need to pass between the walings at an angle.

Note: The combination of tie bar head connections to the outside and inside of the sheet pan is shown for example only and would not normally be used in practice.


Detail X

Detail Z Tie bar connection inside sheet pile pan for additional corrosion protection

Detail Y Tie bar connection outside sheet pile

Tie bar connections to a sheet pile wall can be made in two ways - outside the wall or inside as shown opposite. Generally walings placed inside the retaining wall are preferred both for aesthetic reasons and, in the case of a wall in tidal or fluctuating water level conditions, to prevent damage to the waling by floating craft or vice versa.

Placing the waling inside the wall also allows the tie bar to be connected inside the wall within the pan of a sheet pile. This greatly increases the corrosion protection to the main tie bar connection, see detail Z.

When the waling is placed behind the front wall, it is necessary to use waling bolts and plates at every point of contact between the piles and the waling to ensure load is transferred fully to the waling.

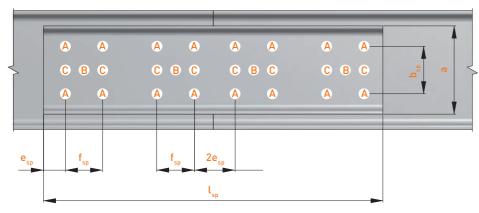
Anker Schroeder supply a complete range of waling bolts to suit project applications. Bolt heads are forged on to the bar and if these are placed on the outside of the wall provide greater corrosion protection than exposed threads such as hexagon nut connections.

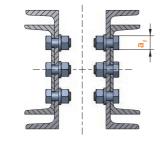
For design purposes the waling can be considered as continuous with allowance being made for end spans. Although the waling is then statically indeterminate, it is usual to adopt a simplified approach where the bending moment is assumed to be wL²/10, being the calculated load to be supplied by the anchorage system acting as a uniformly distributed load and L is the span between tie bars.

When checking the anchorage system for the loss of a single tie bar, the load in the anchorage system is assessed on the basis of the requirements for a serviceability limit state analysis with no allowance being made for overdig at excavation level. The resulting bending moments and tie forces are considered to be ultimate values and are applied over a length of waling of 2L.

In this extreme condition, it can be demonstrated that, with the exception of the tie bars at either end of the external spans, the bending moment in a continuous waling resulting from the loss of any tie rod will not exceed 0.3 wL² where w is the support load calculated for this condition expressed as a UDL and, for simplicity, L is the original span between tie bars.

Typical waling sizes and grades along with theoretical bending capacities are given in table 12. It is intended that these values are used for estimation only and provide an initial assessment to which waling section may be suitable. For complete assessment of structural requirements a more rigorous analysis taking into account factors such as torsion, axial loading and high shear loads should be made.


ASD


DESIGN **CONSIDERATIONS**

WALINGS AND SPLICE CONNECTIONS

WALING BOLTS

Waling bolts are made from the same grades of steel as ASD0355 & ASD0500. Bolts can be made with forged hexagon heads or threaded each end, lengths are made to order. Standard hexagon nuts are provided.

Wali	ings		Splice connections										
Section (European)	Section Modulus in ³ (cm³)	Section	l _{sp} in (mm)	hole pattern	b _{sp} in (mm)	e _{sp} in (mm)	f _{sp} in (mm)	Bolts (DIN 7990)	Hex across flat in (mm)				
UPN180	18.3 (300)	UPN140	22.0 (560)	А	2.4 (60)	1.6 [40]	2.4 [60]	32 x M20 x 45 mm lg	1.2 (30)				
UPN200	23.3 (382)	UPN140	25.2 (640)	А	2.4 (60)	1.6 (40)	2.4 (60)	32 x M20 x 45 mm lg	1.2 (30)				
UPN220	29.9 [490]	UPN160	26.8 (680)	А	3.1 (80)	1.6 (40)	2.4 [60]	32 x M20 x 45 mm lg	1.2 (30)				
UPN240	36.6 (600)	UPN180	29.1 (740)	А	3.5 (90)	2.0 (50)	3.0 (75)	32 x M24 x 50 mm lg	1.4 (36)				
UPN260	45.3 (742)	UPN200	31.5 (800)	А	4.3 (110)	2.0 (50)	3.0 (75)	32 x M24 x 50 mm lg	1.4 [36]				
UPN280	54.7 (896)	UPN220	33.1 (840)	AB	4.7 [120]	2.0 (50)	3.5 (90)	40 x M24 x 55 mm lg	1.4 (36)				
UPN300	65.3 (1,070)	UPN220	36.2 (920)	AB	4.7 [120]	2.0 (50)	3.5 (90)	40 x M24 x 55 mm lg	1.4 (36)				
UPN320	82.9 (1,358)	UPN240	39.4 (1,000)	AB	5.1 (130)	2.4 (60)	4.3 (110)	40 x M30 x 65 mm lg	1.8 [46]				
UPN350	89.6 [1,468]	UPN260	39.4 (1,000)	AB	5.5 (140)	2.4 (60)	4.3 (110)	40 x M30 x 65 mm lg	1.8 [46]				
UPN380	101.2 (1,658)	UPN300	39.4 (1,000)	AC	7.1 (180)	2.4 (60)	3.5 (90)	48 x M30 x 65 mm lg	1.8 [46]				
UPN400	124.5 (2,040)	UPN300	39.4 (1,000)	AC	7.1 (180)	2.4 (60)	3.5 (90)	48 x M30 x 65 mm lg	1.8 [46]				

The above sizes are the most common used - other sections can be provided on request.

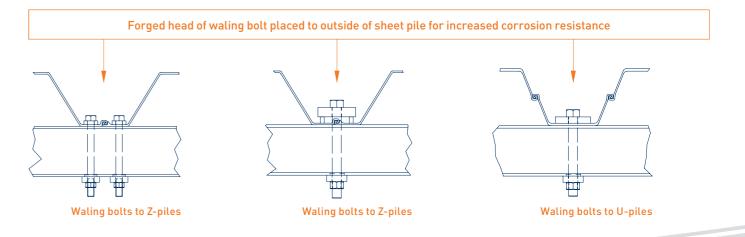
Waling splice detail

Port, Reykjavik

For longer lengths, walings can be joined by splice sections. These should be loca- connections. Where sheet pile tie bar ted at a distance of 0.28 of the tie bar spacing from an tie bar location as this will be close to the position of minimum bending moment in the waling. The walings should be ordered 100 mm longer than the theoretical dimensions to allow for any creep which may develop in the wall as the piles are driven. Splice connections can be welded or bolted, if bolted only one end of the waling length is drilled for splicing to match the splice hole pattern. The other end is supplied plain for cutting and drilling on site, after the actual length required has been determined. Where inclined ties are used,

the vertical component of the tie bar load must not be overlooked and provision must be made to support the waling,

usually in the form of brackets or welded walls are used, similar walings to those at the retaining wall are required. These are always placed behind the tie bar piles and consequently no waling bolts are required. Where higher waling loads are found, e.g. for combi-walls, Anker Schroeder can offer walings fabricated from higher inertia sections, e.g. H sections – please contact our sales department for more information.


Where walings form part of the permanent structure they can be supplied with protective coatings or often more economical a sacrificial steel allowance made. If coatings are supplied, then further coatings are recommended on site after installation.

Thread	Thread pite P	ch

Table 13 - Waling Bolts

Thread	Thread pitch P	Stress area A _{sp}	Width Across Flats*	Grade ASDO	Load Capacity (based on calculation page 6)
Metric (in)	mm	in² (mm²)	in (mm)		kips (kN) kips (kN)
36 (1.4)	4.0	1.3 (817)	2.2 (55)	355	45.0 (200) 28.1 (125)
30 (1.4)	4.0	1.3 (017)	Z.Z (JJ)	500	58.2 (259) 36.4 (162)
42 [1.7]	4.5	1.7 (1,121)	2.6 (65)	355	61.6 (274) 38.6 (171)
42 (1.7)	4.5	1.7 (1,121)	2.0 (03)	500	79.8 (355) 49.9 (222)
45 (1.8)	4.5	2.0 (1,306)	2.8 (70)	355	71.9 (320) 44.9 (200)
40 (1.0)	4.5	2.0 (1,500)	2.0 (70)	500	93.1 (414) 58.1 (259)
48 [1.9]	5.0	2.3 (1,473)	3.0 (75) —	355	81.2 (361) 50.7 (225)
40 (1.7)	5.0	2.3 (1,473)	3.0 (73)	500	105.0 [467] 65.6 [292]
52 (2.0)	5.0	2.7 (1,758)	3.1 (80)	355	96.7 (430) 60.5 (269)
JZ (2.0)	5.0	2.7 (1,730)	J. I (00)	500	125.2 (557) 78.2 (348)
56 (2.2)	5.5	3.1 (2,030)	3.3 (85) —	355	111.7 [497] 69.8 [311]
JO (Z.Z)	0.0	3.1 (2,030)	3.3 (00)	500	144.6 (643) 90.4 (402)
60 (2.4)	5.5	3.7 (2,362)	3.5 (90)	355	129.9 (578) 81.2 (361)
OU (∠.4)	0.0	3.7 (2,302)	3.3 (90)	500	168.2 (748) 105.1 (468)
64 (2.5)	4.0	4.1 (2,676)	3.7 (95)	355	147.2 (655) 92.0 (409)
04 (2.3)	6.0	4.1 (Z,0/0)	5.7 (75)	500	190.6 (848) 119.1 (530)

*can be increased to allow for sacrificial corrosion

ASD PRODUCT DATA

Waling bolt with forged head and hexagon nut.

CORROSION PROTECTION

Marine structures inherently operate in aggressive environments and selection of robust protection systems for tie bars is key to the longevity of a structure. It is very important to consider the corrosion protection of the tie bars at design stage and of particular importance is the connection to the front wall as the tie bar is typically subjected to the most aggressive environment at this point and this is the most common area of failure for an anchorage.

Tables 4-1 & 4-2 of EN1993-5 give guidance to corrosion allowances for steel sheet piles, it is accepted practice to use these same rates for tie bars.

Corrosion protection for tie bars can be provided in several ways.

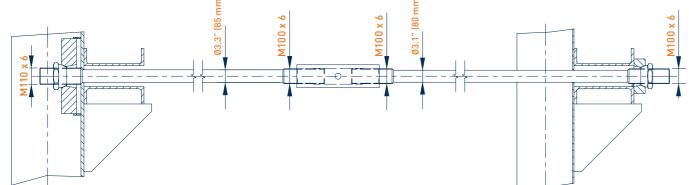
Sacrificial steel

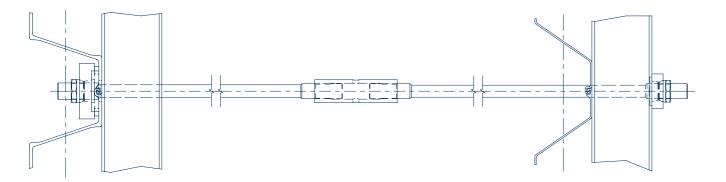
Anker Schroeder consider sacrificial steel to be the most practical and robust corrosion protection. The tie bar shaft and thread size are increased in diameter to allow for corrosion steel loss during the life of the structure. No additional coating is required.

The figure below shows how the threaded part of the tie bar in the splash zone has been increased in diameter to allow for the anticipated corrosion loss. This system is robust as no special transport or site considerations are required.

Table 14 - Corrosion allowances for steel tie bars

EN1993-5 Table 4-1 - Recommended value for the loss of steel thickness due to corrosion in soils with or without groundwater


Required design working life		5 years	25 years	50 years	75 years	100 years
Non-compacted and non-aggressive fills	in	0.007	0.028	0.047	0.067	0.087
(clay, schist, sand, silt)	(mm)	(0.18)	(0.70)	(1.20)	(1.70)	(2.20)
(etay, senist, sand, sitt)	((((()))))	(0.10)		(1.20)	(1.70)	(2.20)


Note: For compacted fills EN1993-5 allows the corrosion rates above to be halved

EN1993-5 Table 4-2 – Recommended value for the loss of steel thickness (mm) due to corrosion in fresh water or sea water.

Required design working life		5 years	25 years	50 years	75 years	100 years
Common fresh water (river, ship canal)	in	0.006	0.022	0.035	0.045	0.055
in the zone of high attack (water line)	(mm)	(0.15)	(0.55)	(0.90)	(1.15)	(1.40)
Very polluted fresh water (sewage, industrial effluent) in the zone of high attack (water line)	in (mm)	0.012 (0.30)	0.051 (1.30)	0.091 (2.30)	0.13 (3.30)	0.169 (4.30)
Sea Water in temperate climate in the zone of high attack (low water and splash zones)	in (mm)	0.022 (0.55)	0.074 (1.90)	0.148 (3.75)	0.22 (5.60)	0.295 (7.50)
Sea Water in temperate climate in the zone of permanent immersion or in the intertidal zone	in (mm)	0.01 (0.25)	0.035 (0.90)	0.069 (1.75)	0.102 (2.60)	0.138 (3.50)

Note: The values given are only for guidance. Local conditions should be considered because they may affect the actual corrosion rate, which can be lower or higher than the average value given in the table - refer to EN1993-5 for full restriction

By calculation use Grade ASD0500

Shaft diameter require	ed	3" (76 mm)					
Thread diameter requi	red	M100 (4")					
Sacrificial corrosion allowance in fill	0.04	7" (1.2 mm)					
Sacrificial corrosion allowance at head	0.148	3" (3.75 mm)					
Tie bar shaft size required = 3.28" (83.5 mm) (nearest standard size = 3.3" (85 mm)) and thread size M110. (4.3").							

Therefore use ASD0500 M110/85.

Note: The shaft and thread can be reduced as the corrosion rate decreases (see page 11).

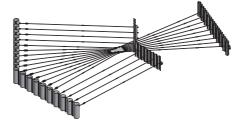
Wrapping systems

The most commonly used wrapping system is to cover the tie bars in a protective barrier such as petrolatum tape (e.g. Denso).

Anker Schroder can offer factory petro- be given to threads which are unable latum wrapped bar, but it should be remembered that connections cannot be wrapped until installed on site and can increase installation time considerably.

The vulnerable tie bar head can only be fully protected once installed and this is often difficult to achieve in site conditions.

It is important to ensure that protection to connections and the tie bar head are correctly performed during installation, any damaged or unprotected areas must be repaired before backfilling.


Factory wrapping of tie bars

Galvanized T-plates

Anchorage Fabrications Anker Schroeder can also supply anchorage distribution units for more complex constructions.

ASD

DESIGN **CONSIDERATIONS**

With the exception of ASD0700 bar Anker Schroeder tie bars and components can be hot dip galvanised to EN ISO 1461, but consideration should to have more than a nominal coating of zinc. Please contact our technical department for further detail.

Galvanising

Painting

for further detail.

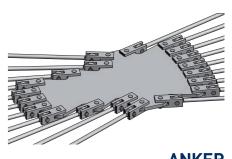
Tie bars can have any suitable paint system applied as required by the client. Consideration should be given to likely damage that will occur to the paint system during transport and installation as any break in the protective system could lead to pitting corrosion.

Please contact our technical department

Storage of wrapped tie bars

Galvanized tie bars

General Note


Any breaks in the protective system could lead to aggressive pitting corrosion and premature failure of the tie bar. To discuss these issues further, please contact our technical department.

Site wrapping of connections

Painted tie bar

SITE INFORMATION

Storage of tie bars

Tie bars and accessories shall be stored and handled in such a way as to avoid excessive deformation, corrosion, exposure to heat (e.g. flame cutting), bending or damage of any kind being caused on the rods. threaded ends. turnbuckles or nuts.

tected from dust, dirt and damage. Clean assembled on site to design lengths. and check all threads thoroughly before use.

ried out on the tie rods and/or accessoaccessories should be protected from any exposure to heat processes on site such as welding or flame cutting.

Assembly

Container or road shipping restrictions generally mean that tie bars are delivered in sections of typically 12 m or less, however Anker Schroeder have direct rail links and convenient access to docks where longer lengths can be shipped - please contact our technical All threaded parts must be carefully pro- team for further detail. Sections are Assembly on a clear hard-standing with roller trestles is recommended. Great care should be taken in ensuring No welding or flame cutting shall be car- threads are clean and free of dirt and damage prior to assembling. All threaries (turnbuckles, couplers, nuts) without ded connections must be made with miwritten approval of ASDO. All tie bars and nimum engagement of at least 1 x diameter of the thread.

Installation

Tie bars should be installed as close as possible to the line of force that they will experience during service. Account should be taken of the additional forces that will be introduced to the bar by settlement of the fill, particularly bending at the wall connection.

Long tie bars should be lifted by use of a stiff lifting beam with supports at approximately every 13-20 ft (4-6 m).

Site services & training

Anker Schroeder are able to offer training for assembly, installation and stressing either at your site or at our factory in Dortmund. Please contact our technical department for more information.

Stock and availability

Anker Schroeder hold over 4,500 tonnes of raw material enabling many projects to be quickly supplied with initial needs. However most major projects will require the bulk of raw material to be rolled to the specific project diameter which can be adapted to the nearest millimetre to ensure the most economical solution. Please contact our sales department to discuss your project requirements.

OTHER PRODUCTS

ASD0 Stainless Architectural tie bars

Diameter 1/2" to 2 1/4" M12 to M56

ASD0 Structural

Architectural tie bars

Diameter 1/2" to 6.3"

M12 to M160

ASD0 Micro Piles

Diameters up to 6.3" and working loads > 675 kips M160 - 3,000 kN

This publication provides information and technical details currently used by Anker Schroeder in the manufacture of its products.

Although we have taken great care in the preparation of the data within this publication, we cannot assume responsibility for the completeness and accuracy of all the details given. Each customer should satisfy themselves of the product suitability for their requirements. The publication of this data does not imply a contractual offer.

In line with Anker Schroeder's policy of continuous improvement the company reserves the right to change or amend details. Please contact our technical department for further information or to ensure these details are current.

Sustainability

Steel is the most recycled material in construction. All anchorage material supplied by Anker Schroeder is sourced from reputable steel mills and, where possible, up to 90% of melt is recycled steel. Once a structure has reached the end of it's design life Anker Schroeder Bars are 100% recyclable as scrap material but the economics and environmental impact of extraction from the structure need to be considered.

ASD

GENERAL INFORMATION

ASD0 Forged Shackles

Working load capacities up to 1,650 tons

Anker Schroeder ASDO GmbH Hannöversche Straße 48 44143 Dortmund Germany Phone +49 231 51701-0 Fax +49 231 51701-56 sales@anker.de www.asdo.com